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0 Practical issues



Information and material

These slides will be posted after/during the summer school on:

http://wiki.helsinki.fi/display/mathstatKurssit/FICS+2010

Printed versions will also be produced in somewhat random manner.

It is assumed that the audience is familiar with basic theory of functional

analysis, Sobolev spaces, elliptic partial differential equations and

complex analysis.



Background

The exists a vast amount of literature on the factorization and

source/scattering support methods. The original ideas were presented in

the context of inverse scattering in the papers

A. Kirsch, Characterization of the shape of a scattering obstacle

using the spectral data of the far field operator, Inverse Problems,

14, 1489–1512 (1998), and

S. Kusiak and J. Sylvester, The scattering support, Commun.

Pure Appl. Math., 56, 1525–1548 (2003),

respectively.



Here, we only consider these methods in the framework of electrical

impedance tomography (EIT), and follow mainly the four articles

M. Brühl, Explicit characterization of inclusions in electrical

impedance tomography, SIAM J. Math. Anal., 32, 1327–41 (2001),

M. Brühl and M. Hanke, Numerical implementation of two

noniterative methods fro locating inclusions by impedance

tomography, Inverse Problems, 16, 1029–1042 (2000),

B. Gebauer and N. Hyvönen, Factorization method and

irregular inclusions in electrical impedance tomography, Inverse

Problems, 23, 2159-2170 (2007), and

M. Hanke, N. Hyvönen, and S. Reusswig, Convex source

support and its application to electric impedance tomography, SIAM

J. Imag. Sci., 1, 364-378 (2008).



Timetable

The preliminary timetable is as follows:

Monday (1 hour): Short introduction to EIT and some

monotonicity results.

Tuesday (2 hours): Theory and algorithmic implementation of the

factorization method.

Thursday (2 hours): Numerical examples for the factorization

method. Theory of the convex source support algorithm.

Friday (1 hour): Algorithmic implementation and numerical

examples for the convex source support algorithm.



1. EIT with inclusions



Idealized EIT measurements with inclusions
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Neumann-to-Dirichlet maps

Let D ⊂ R
n, n = 2 or 3, be a simply connected domain with a

conductivity σ ∈ L∞(D), σ > c0 > 0, such that Ω := supp(σ − 1) is a

compact subset of D. We consider the Neumann problem

∇ · (σ∇u) = 0 in D,
∂u

∂ν
= f on ∂D

where f ∈ L2
⋄(∂D) :=

{

f ∈ L2(∂D) | 〈f, 1〉 = 0
}

is the applied

boundary current density and ν is the exterior unit normal. These

equations define the electromagnetic potential u ∈ H1(D)/R uniquely.

The Neumann-to-Dirichlet, or current-to-voltage, map

Λ : f 7→ u|∂D, L2
⋄(∂D) → L2

⋄(∂D),

is bounded, compact and self-adjoint. Note that we constantly identify

L2
⋄(∂D) with L2(∂D)/R by choosing the ground level appropriately.



Similarly, we introduce the ‘background’ Neumann-to-Dirichlet map

Λ0 : f 7→ u0|∂D, L2
⋄(∂D) → L2

⋄(∂D),

where u0 ∈ H1(D)/R is the unique solution of

∆u0 = 0 in D,
∂u0
∂ν

= f on ∂D

for f ∈ L2
⋄(∂D).

Take note that the relative Neumann-to-Dirichlet map

Λ0 − Λ : f 7→ (u0 − u)|∂D

is infinitely smoothening, i.e., (Λ0 − Λ)f = u0 − u belongs to C∞
⋄ (∂D)

for any f ∈ L2
⋄(∂D).



The task in hand

Throughout this course, the aim is to extract constructive information

on the inhomogeneity, i.e., on the set Ω = supp(σ − 1), from (partial

and noisy information on) the relative boundary map Λ0 − Λ.



1.1 Two monotonicity lemmas



The lemmas and their proofs

Lemma. Assume that σ1 and σ2 are feasible conductivities and such

that σ1 ≤ σ2. Then the corresponding relative Neumann-to-Dirichlet

operator Λ1 − Λ2 is positive semi-definite, i.e.,

〈f, (Λ1 − Λ2)f〉L2(∂D) ≥ 0

for all f ∈ L2
⋄(∂D).



Proof. According to the fundamental variational theory of elliptic partial

differential equations, the electromagnetic potential u1 ∈ H1(D)/R

corresponding to σ1 and a nonzero current density f ∈ L2
⋄(∂D) is the

unique solution of the variational equation
∫

D

σ1∇u1 · ∇v dx =

∫

∂D

fv dx for all v ∈ H1(D)/R, (1)

as well as the unique minimizer of the energy functional

1

2

∫

D

σ1|∇v|2 dx−
∫

∂D

fv dx

in H1(D)/R. The corresponding minimum value is

1

2

∫

D

σ1|∇u1|2 dx−
∫

∂D

fu1 dx = −1

2

∫

∂D

fu1 dx = −1

2

∫

∂D

f Λ1f dx

due to (1). (The above conclusions remain valid if σ1, u1 and Λ1 are

replaced by σ2, u2 and Λ2, respectively.)



In consequence,

−1

2

∫

∂D

f Λ1f dx =
1

2

∫

D

σ1|∇u1|2 dx−
∫

∂D

fu1 dx

≤ 1

2

∫

D

σ1|∇u2|2dx−
∫

∂D

fu2 dx

≤ 1

2

∫

D

σ2|∇u2|2dx−
∫

∂D

fu2 dx

= −1

2

∫

∂D

f Λ2f dx,

which proves the claim. �



Lemma. Assume that σ1 and σ2 are as in the previous lemma and let

σ0 be yet another feasible conductivity. If σ0 ≤ σ1,

R
(

(Λ0 − Λ1)
1/2
)

⊆ R
(

(Λ0 − Λ2)
1/2
)

.

Conversely, if σ2 ≤ σ0, it holds that

R
(

(Λ2 − Λ0)
1/2
)

⊆ R
(

(Λ1 − Λ0)
1/2
)

.

Proof. First of all, the above square roots are well-defined because the

corresponding operators are positive semi-definite, self-adjoint and

compact (see the previous lemma).

A functional analytic lemma that is frequently used for the factorization

method is that for any continuous linear operator A : H1 → H2,

between Hilbert spaces H1 and H2,

y ∈ R(A) iff ∃C > 0 : 〈y, x〉H2
≤ C ||A∗x||H1

∀x ∈ H2.



An immediate consequence for self-adjoint operators A,B : H1 → H1 is

that the existence of a constant C > 0 satisfying

||Ax|| ≤ C ||Bx|| for all x ∈ H1

implies that R(A) ⊆ R(B).

Let σ0 ≤ σ1 ≤ σ2. The previous lemma tells us that for any f ∈ L2
⋄(∂D)

〈f, (Λ0 − Λ1)f〉 = 〈f, (Λ0 − Λ2)f〉 − 〈f, (Λ1 − Λ2)f〉
≤ 〈f, (Λ0 − Λ2)f〉 ,

meaning that
∣

∣

∣

∣(Λ0 − Λ1)
1/2f

∣

∣

∣

∣ ≤
∣

∣

∣

∣(Λ0 − Λ2)
1/2f

∣

∣

∣

∣ and, thus,

R
(

(Λ0 − Λ1)
1/2
)

⊆ R
(

(Λ0 − Λ2)
1/2
)

.

Since the second part of the assertion follows from the same line of

reasoning, the proof is complete. �
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2. Factorization method



2.1 The factorization



A simple setting

In this subsection, it is assumed that the conductivity σ is of the form

σ =







1 + κ in Ω,

1 in D \ Ω,

where κ > 0 is a real number and Ω is a nonempty, simply connected

and smooth domain such that Ω ⊂ D.

Take note that the results presented below are, actually, valid for less

regular domains Ω and for variable and irregular κ — as well as for less

regular D. However, our aim is to combine results for this simple

framework with the monotonicity arguments of Section 1.1 to obtain an

even stronger final theorem.



Three auxiliary operators

Let us introduce three auxiliary operators.

(i) To begin with, consider the boundary value problem

∆v = 0 in D \ Ω, ∂v

∂ν
= 0 on ∂D

∂v

∂ν
= φ on ∂Ω,

where the unit normals point out of D \ Ω. For φ ∈ H
−1/2
⋄ (∂Ω), this

problem has a unique solution v ∈ H1(D \ Ω)/R, and thus it follows

from the trace theorem that the operator

L : φ 7→ v|∂D, H
−1/2
⋄ (∂Ω) → L2

⋄(∂D)

is well-defined and bounded — actually, L is infinitely smoothening and,

in particular, compact.



(ii) The dual operator of L is given by

L∗ : φ∗ 7→ v∗|∂Ω, L2
⋄(∂D) → H

1/2
⋄ (∂Ω),

where v∗ ∈ H1(D \ Ω)/R is the unique solution of

∆v∗ = 0 in D \ Ω, ∂v∗

∂ν
= φ∗ on ∂D,

∂v∗

∂ν
= 0 on ∂Ω

for φ∗ ∈ L2
⋄(∂D).

Indeed, by Green’s formula,

〈φ∗, Lφ〉∂D = 〈∂v
∗

∂ν
, v〉∂D

=

∫

D\Ω

∇v∗ · ∇v dx− 〈∂v
∗

∂ν
, v〉∂Ω

= 〈∂v
∂ν
, v∗〉∂Ω + 〈∂v

∂ν
, v∗〉∂D = 〈φ, L∗φ∗〉∂Ω,

which proves the claim.



(iii) Finally, let ψ ∈ H
1/2
⋄ (∂Ω) and consider the problem

∆w = 0 in D \ ∂Ω, ∂w

∂ν
= 0 on ∂D,

κ
∂w

∂ν

+

− ∂w

∂ν

−

= 0, w+ − w− = ψ on ∂Ω,

where the superscripts + and − denote traces taken from within Ω and

D \ Ω, respectively. Such a transmission problem has a unique solution

w in (H1(Ω)⊕H1(D \ Ω))/R.

The third auxiliary operator is defined via

F : ψ 7→ ∂(w0 − w)

∂ν

∣

∣

∣

∣

−

∂Ω

, H
1/2
⋄ (∂Ω) → H

−1/2
⋄ (∂Ω),

where w0 ∈ (H1(Ω)⊕H1(D \ Ω))/R is the solution of the above

transmission problem when κ is replaced by 1.



Lemma. The operator F : H
1/2
⋄ (∂Ω) → H

−1/2
⋄ (∂Ω) is an isomorphism.

Furthermore, F is positive definite and allows a decomposition

F = GG∗,

where G : L2
⋄(∂Ω) → H

−1/2
⋄ (∂Ω) is also an isomorphism.

Proof. Brühl 2001, Lemma 3.3 and Section 3.2. �



The factorization of the factorization method

Theorem. The relative Neumann to Dirichlet map Λ0 − Λ can be

factored as

Λ0 − Λ = LFL∗ = LGG∗L∗ = LG(LG)∗.

Proof. Brühl 2001, Lemma 3.2. �

During the rest of the considerations on the factorization method, it is

important to bear in mind

• the general form of the above factorization,

• the definition of the operator L, and

• the fact that G : L2
⋄(∂Ω) → H

−1/2
⋄ (∂Ω) is an isomorphism.



2.2 A range test



A range identity

The following theorem composes the core of the factorization method.

Theorem: Assume that the conductivity is as in the previous section.

Then, it holds that

R
(

(Λ0 − Λ)1/2
)

= R(L).

Proof. First of all, the square root (Λ0 − Λ)1/2 : L2
⋄(∂D) → L2

⋄(∂D) is

well-defined because the original operator is positive definite, self-adjoint

and compact. Furthermore, it follows easily — e.g., by using the singular

value decomposition of LG — that

R
(

(Λ0 − Λ)1/2
)

= R
(

(LG(LG)∗)1/2
)

= R(LG) = R(L)

because G is surjective.



The remarkable feature of this theorem is that the range of (Λ0 − Λ)1/2

is independent of the (constant) conductivity inside the inclusion Ω!

This property can be utilized constructively, e.g., by introducing a family

of dipole potentials {Φy}y∈D satisfying

∆xΦy(x) = α · ∇xδ(x− y), x ∈ D,
∂Φy

∂ν
= 0 on ∂D,

where the dipole moment 0 6= α ∈ Rn and the location of the

electromagnetic dipole, y ∈ D, are free parameters. We denote the

Dirichlet trace of Φy on ∂D by φy.

Notice that Φy is smooth away from y and has a singularity of strength

1

|x− y|n−1

at y ∈ D.



The range test

Theorem. Assume that σ is of the simple piecewise constant form

introduced in Section 2.1. Then, the inclusion Ω has the following

characterization:

y ∈ Ω ⇐⇒ φy ∈ R
(

(Λ0 − Λ)1/2
)

.



Proof. Assume first that y ∈ Ω. Then, it is easy to see that

φy = L

(

∂Φy

∂ν
|∂Ω
)

,

which means that φy ∈ R(L) = R
(

(Λ0 − Λ)1/2
)

.

Suppose next that φy ∈ R(L) = R
(

(Λ0 − Λ)1/2
)

for some y ∈ D \ Ω.

Then, according to the definition of L, there exists v ∈ H1(D \ Ω)
satisfying

∆v = 0 in D \ Ω, ∂v

∂ν
= 0 on ∂D, v = φy on ∂D.

In particular, such v has the same Cauchy data as Φy on ∂D, and it thus

follows from the principle of unique continuation for the Laplacian that

v = Φy in (D \ Ω) \ {y},

which is a contradiction since Φy has a relatively strong singularity at y.

�



2.3 Generalized range test



A less simple setting

In this subsection, it is still assumed that the conductivity σ is of the

form

σ =







1 + κ in Ω,

1 in D \ Ω.

However, now we only require that Ω is open, Ω ⊂ D and D \ Ω is

connected, and that for each y ∈ Ω there exist scalar constants

ǫy, ry > 0 such that κ ∈ L∞(Ω) satisfies

κ > ǫy almost everywhere in B(y, ry) ⊂ D, (2)

where B(y, ry) denotes the open ball of radius ry centered at y.



Generalized range test

Theorem. Assume that σ is of the form introduced above. Then, the

inclusion Ω has the following characterization (modulo ∂Ω):

y ∈ Ω =⇒ φy ∈ R
(

(Λ0 − Λ)1/2
)

and

y ∈ D \ Ω =⇒ φy /∈ R
(

(Λ0 − Λ)1/2
)

.



Proof. Let y ∈ Ω and note that by assumption there exist scalars

ǫy, ry > 0 such that κ > ǫy almost everywhere in B(y, ry) ⊂ Ω. We

define an auxiliary conductivity by

σy =







1 + ǫy in B(y, ry),

1 in D \B(y, ry),

and denote the associated Neumann-to-Dirichlet map by Λy. The range

test in the “simple setting” indicates that φy ∈ R{(Λ0 − Λy)
1/2}.

Furthermore, since σy < σ, it follows from the second monotonicity

lemma of Section 2.1 that also

φy ∈ R
{

(Λ0 − Λ)1/2
}

.



Next, let y ∈ D \ Ω. Since D \ Ω is open and connected, there exists a

simply connected open set Ωy such that y /∈ Ωy, Ω ⊂ Ωy, D \ Ωy is

connected and ∂Ωy is smooth. We redefine the auxiliary conductivity by

σy =







1 + k in Ωy,

1 in D \ Ωy,

where the scalar constant k > 0 is chosen so that σy > σ almost

everywhere in Ω. Now, it follows from the range test in the simple

setting and the monotonicity relation for the ranges that

φy /∈ R
{

(Λ0 − Λy)
1/2
}

⊇ R
{

(Λ0 − Λ)1/2
}

,

where Λy is again the Neumann-to-Dirichlet map corresponding to σy. �



2.4 Algorithmic implementation



Picard criterion

There are several ways to numerically implement the range test

introduced above. However, the most successful algorithms are arguably

based on the so-called Picard criterion:

Assume the setting of Section 2.3. Since Λ0 − Λ : L2
⋄(∂D) → L2

⋄(∂D) is

a compact, self-adjoint and positive definite operator, it has an

orthonormal basis of eigenfunctions {ϕk}∞k=1 ⊂ L2
⋄(∂D) and

corresponding positive eigenvalues {λk}∞k=1 ⊂ R+ (arranged in

descending order) such that

(Λ0 − Λ)ϕk = λkϕk, k = 1, 2, . . . .

The square root (Λ0 − Λ)1/2 has the same eigenfunctions as the original

operator and the eigenvalues {
√
λk}∞k=1.



According to the Picard criterion, the following equivalence holds:

φy ∈ R
(

(Λ0 − Λ)1/2
)

⇐⇒
∞
∑

k=1

〈φy, ϕk〉2L2(∂D)

λk
<∞. (3)

This can be proved in a straightforward manner: Just solve the equation

(Λ0 − Λy)
1/2f = φy

formally using the above introduced eigensystem, and then note that the

squared norm of the obtained formal solution equals the series on the

right-hand side of (3).



Practical issues

Naturally, real-life measurements — or even numerical simulations — do

not provide enough information to carry out the test on the right-hand

side of (3) exactly:

In practice, one is forced to work with some kind of a finite-dimensional

and noisy approximation of Λ0 − Λ, which can be assumed to be

presented as a symmetric matrix A ∈ R
m×m, m ∈ N, with respect to

some suitable orthonormal (incomplete) basis of L2
⋄(∂D).

Moreover, the boundary potentials {φy}y∈D can be given explicitly only

in some simple geometries, and thus one is typically forced to work with

inaccurate test dipoles. (The computational cost of approximating φy

also depends heavily on the geometry.)



Numerical implementation

Let {vk}mk=1 ⊂ Rm and {µk}mk=1 ⊂ R, respectively, be the eigenvectors

and eigenvalues (in descending order) of the finite-dimensional matrix

approximation A ∈ R
m×m, and assume that {hy}y∈Z ⊂ R

m are the

available approximations of {φy}y∈Z in the same basis with respect to

which A is given. Here, Z ⊂ D is some finite grid of test points .

Instead of the infinite series in (3), we are forced to consider the

finite-dimensional analogue

I(y) =

m0
∑

k=1

(hy · vk)2
µk

, y ∈ Z. (4)

Notice that, in general, it is not reasonable to choose the upper limit m0

to be the dimension of the matrix A, i.e., m. Indeed, because the

eigenvalues of Λ0 −Λ converge to zero, for ‘large’ k the values 1/λk and

1/µk can differ arbitrarily much even without any measurement noise.



The choice of an appropriate cut-off index m0 is a subtle issue and will

not be considered here more thoroughly.

After choosing m0, i.e., the number of ‘reliable’ eigenvectors and

eigenvalues of A, one can, e.g., plot the function

Ind(y) =
1

I(y)
.

Intuitively, Ind should attain ‘large’ values inside the inhomogeneity Ω

and ‘small’ values in its exterior.

Another successful technique is to use the ‘reliable’ eigenvectors and

eigenvalues of A to apply a logarithmic regression model to both the

numerators and denominators of the terms in the series (4), i.e.,

2 log |hy · vk| ≈ ak + b, logµk ≈ ck + d, a, b, c, d ∈ R.

Under the assumption that these approximations are feasible, one can

postulate that the original test series converges if and only if a < c.



Figure 1: Exact conductivities for the three test cases.



Figure 2: Numerical reconstructions for exact simulated data.



Figure 3: Numerical reconstructions for noisy simulated data.
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2.5 Concluding remarks on the factorization
method



Auxiliary remarks

• The above considerations can be generalized, e.g., to the cases of

– nonconstant but known background conductivity,

– inclusions that are less conductive than the background,

– inclusion that have ’holes’ in them, and

– measurements only on some subset of the boundary (Brühl and

Hanke 2003).

• The choice of the upper limit in the Picard criterion and the

regularization properties of the factorization method have been

considered rigorously by Lechleiter (2006).

• The factorization algorithm has been implemented in the framework

of — more or less — realistic electrode models of EIT by Brühl,

Hakula, Hanke, H, Lechleiter etc..



• In my opinion, the factorization method has two obvious weaknesses:

– All inclusions must — at least according to the current theory —

be either more or less conductive than the background.

– In principle, the method requires the knowledge of the full

Neumann-to-Dirichlet map (at least, on some open and

nonempty part of the boundary).



3 Convex source support algorithm



Motivation and basic ideas

• The convex source support (CSS) algorithm is a noniterative

method for localizing sources in electrostatics.

• It can also be used for inclusion detection in EIT with only one pair

of current density and boundary potential as the measurement data.

• The background theory for the CSS algorithm is independent of the

spatial dimension n ≥ 2, but the corresponding reconstruction

algorithm is (currently) based on tools of complex analysis and is

thus inherently two-dimensional.



3.1 Convex source support in electrostatics



An inverse source problem

Let D ⊂ R
2 be a bounded and simply connected domain with smooth

enough boundary and consider the Poisson problem

∆v = F in D,
∂v

∂ν
= 0 on ∂D,

where F ∈ E ′
⋄(D) := {g ∈ E ′(D) | 〈g, 1〉 = 0} is a compactly supported

mean-free distribution. Such a source problem has a unique solution

v ∈ ∪sH
s(D)/R, which is smooth away from the source F .

We define a linear ‘measurement map’ by

L : F 7→ v|∂D, E ′
⋄(D) → L2

⋄(∂D).

Our inverse problem: Let F0 ∈ E ′
⋄(D) be an unknown source. Extract

information on Ω := suppF0 from the measurement g := LF0.



Convex source support

For g ∈ R(L), the CSS is defined to be (Hanke, H, Lehn, and Reusswig

2008)

Cg :=
⋂

LF=g

suppcF,

where suppcF denotes the convex hull of the support of F .

The idea of the CSS originates from the works of Kusiak, Sylvester and

their co-authors in the framework of inverse scattering.



Main property of the convex source support

Theorem. Let g ∈ R(L). Then, given any ǫ > 0, there exists a source

Fǫ ∈ E ′
⋄(D) such that LFǫ = g and

Cg ⊂ suppcFǫ ⊂ Nǫ(Cg).

Moreover, Cg = ∅ if and only if g = 0.

Proof. For simplicity, let us assume that D is convex.

Suppose that Cg 6= ∅. Then, if we fix an arbitrary ǫ > 0 such that

Nǫ(Cg) ⊂ D, a simple compactness argument shows that we can find a

finite number F1, . . . , Fm of sources satisfying LF1, . . . , LFm = g and

C :=
⋂

k=1,...,m

suppcFk ⊂ Nǫ(Cg).



For each k = 1, . . . ,m, there exists a harmonic function vk that solves

∆vk = 0 in D \ suppcFk, vk = g and
∂vk
∂ν

= 0 on ∂D.

Since suppcFk, k = 1, . . . , n, are convex sets, the principle of unique

continuation shows that any two of the functions vk coincide in the

subset of D where both are harmonic, and all can be extended to the

same (harmonic) function v that solves the above Cauchy problem with

D \ suppcFk replaced by D \ C ⊃ D \Nǫ(Cg).
Thus, the source F = ∆vǫ ∈ E ′

⋄(D) ∩H−2(D), with

vǫ =







v in D \Nǫ(Cg),
0 in Nǫ(Cg),

satisfies LFǫ = g and suppcFǫ ⊂ Nǫ(Cg).
The case when Cg = ∅ can be handled in a similar way. �



Remark. If suppcF is replaced by suppF in the definition of the CSS,

the resulting intersection is empty. This may hold even if the holes in

suppF are covered before the intersection is taken (Hanke, H, Lehn and

Reusswig 2008).



Extension to a disk

Let Bρ ⊂ R2 be an open disk of radius ρ > 0 centered at the origin and

enclosing D. Consider the auxiliary Poisson problem

∆vρ = F in Bρ,
∂vρ
∂ν

= 0 on ∂Bρ,

where F ∈ E ′
⋄(Bρ) is a compactly supported mean-free distribution.

Analogously to the original setting, we define a (virtual) measurement

map by

Lρ : F 7→ vρ|∂Bρ
, E ′

⋄(Bρ) → L2
⋄(∂Bρ).

We set gρ := LρF0 and note that such ‘propagated data’ can be

computed stably using the actual measurement g and a double layer

potential:

gρ(x) = 2

∫

∂D

∂Φ(x− y)

∂ν(y)
g(y) dS(y), x ∈ ∂Bρ.



The convex source support corresponding to gρ is defined in the natural

way:

Cgρ :=
⋂

LρF=gρ

suppcF.

Reconstructing Cgρ is almost equivalent to reconstructing Cg:

• If D is convex, the sets Cg and Cgρ coincide. If not, Cgρ may be a

proper subset of Cg, but is still a nonempty subset of suppcF0 for a

nonzero g. (In particular, Cgρ is — a little counter intuitively —

independent of ρ.)

Remark. After gρ is computed for one ρ, it can be obtained practically

for free for any larger ρ with the help of the fast Fourier transformation.



2.2 Constructive identification of the CSS



The concentric case

Fix ρ, assume that we have access to the propagated data gρ and denote

the (complex) Fourier coefficients of gρ with respect to the polar angle

by {αj}∞j=−∞. Let us consider another open disk BR of radius

0 < R < ρ centered at the origin.

If the Cauchy problem

∆w = 0 in Bρ \BR, w = gρ and
∂w

∂ν
= 0 on ∂Bρ,

has a solution, it can be written using the Fourier coefficients of gρ as

w(r, θ) =
∞
∑

j=−∞

αj

2

(

(

r

ρ

)j

+
(ρ

r

)j
)

eijθ, (r, θ) ∈ (R, ρ)×(−π, π].



By checking when the above series representation of w converges, one

sees relatively easily that Cgρ ⊂ BR if and only if

∞
∑

j=−∞

|αj |2
(R/ρ+ ǫ)2|j|

<∞

for all ǫ > 0.



A useful Möbius transformation

Φ

Φ
−1

B

Bρ

BR



The nonconcentric case

For any closed disk B ⊂ Bρ, there exists a Möbius transformation Φ

that maps Bρ onto itself and B onto some disk BR ⊂ Bρ around the

origin, with R = R(B, ρ) uniquely determined by B and ρ. We denote

by {αj(Φ)}∞j=−∞ the Fourier coefficients of gρ ◦Φ−1 with respect to the

polar angle.

Using the above concentric result and the fact that conformal maps

interplay well with harmonic functions and homogeneous Neumann

boundary conditions, we obtain the following characterization (Hanke, H,

Lehn, Reusswig 2008): It holds that Cgρ ⊂ B if and only if

∞
∑

j=−∞

|αj(Φ)|2
(R/ρ+ ǫ)2|j|

<∞, (5)

for R = R(B, ρ) and every ǫ > 0.



Remark. The above convergence test gives a means to construct Cgρ
because a convex set is uniquely determined by the disks enclosing it.
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2.3 The CSS reconstruction algorithm



Algorithmic implementation (the short version)

The Fourier coefficients {αj(Φ)} show typically a geometric decay in |j|.
Hence, we approximate

log |αj(Φ)| ≈ a|j|+ b, |j| ≥ 1, (6)

in the sense of least squares and postulate that the test series (5)

converges if and only if

R ≥ ρea.

We carry out this test for a certain family of closed disks and

approximate the CSS Cg by the intersection of those disks that were

found to enclose it. (Note that in practice the number of Fourier

coefficients considered reliable for (6) depends on both Φ and the

measurement noise level.)



Let us be a bit more precise:

Up to rotations of the image space, all Möbius transformations of Bρ

onto itself can be given as

Φζ(z) = ρ2
z − ζ

ρ2 − ζz
,

where ζ ∈ Bρ ⊂ C is a free parameter that is mapped to the origin.

Note that we have here identified the real plane R
2 with its complex

counterpart C.

Let Rζ = ρeaζ , where aζ is the slope obtained from the logarithmic

regression model (6) in the case that Φ = Φζ . Under the courtesy of the

assumption that the regression model is exact, it is easy to see that the

closed disk Φ−1
ζ (BRζ

) contains Cg but the same is not true if Rζ is

replaced by any smaller radius.



Hence, we choose a set of (complex) test points Z ⊂ Bρ and

approximate

Cg ≈
⋂

ζ∈Z

Φ−1
ζ (BRζ

).



2.3 Application to EIT



Locating inclusions using one measurement of EIT

(Re)consider the conductivity equation

∇ · (σ∇u) = 0 in D,
∂u

∂ν
= f on ∂D,

and assume that we can apply one current pattern f ∈ L2
⋄(∂D) and

measure the corresponding boundary potential u|∂D ∈ L2
⋄(∂D). We

continue denoting Ω := supp(σ − 1), which is still assumed to be a

compact subset of D.

Our old/new inverse problem: Extract information about Ω from a

single measurement pair (u|∂D, f) of EIT.



Interpretation as a source problem

As always, let u0 be the solution of the conductivity equation

corresponding to the unit background conductivity and the same

boundary current density f as above, and denote g := (u− u0)|∂D. It is

easy to see that

g = LF0,

where F0 = F0(f, σ) = ∆(u− u0) = ∆u is supported in Ω.

Our inclusion detection algorithm is based on reconstructing the convex

source support Cg — or more precisely the ‘extended’ one Cgρ.
(Notice that it is possible that g = 0, in which case the corresponding

CSS is empty.)



2.4 Numerical examples with Matlab



2.5 Concluding remarks on the CSS
algorithm



Auxiliary remarks

• The above considerations can be generalized, e.g., to the cases of

– electrostatics in half-plane geometry (Harhanen, H, 2010),

– the so-called backscatter data of EIT (Hanke, H, Reusswig,

2010), and

– (simulated) electrode measurements of EIT (Hakula, H, 2008).

• Since the CSS corresponding to each measurement pair of EIT is

contained in the convex hull of the inhomogeneity, one may obtain

reconstructions displaying more information by taking the union of

CSSs corresponding to different boundary measurement pairs.


