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O Practical issues



Information and materials

e The main information channel of the course is the homepage:
https://noppa.tkk.fi/noppa/kurssi/mat-1.3626/ .

e The text book is “J. Kaipio and E. Somersalo, Statistical and

Computational Inverse Problems, Springer, 2005" (mainly Chapters
2 and 3).

e Lecture notes and exercise papers will be posted on the course
homepage.



Exercises

e The first exercise session will held on Friday, January 21, i.e., the
day after tomorrow.

e Each week there is one home assignment: The solution to the
assignment in the exercise paper of the week m is to be returned to
the course assistant Stratos Staboulis/Matti Leinonen before the
exercise session of the week m + 1. (For example, the solution to
the home assignment of the first exercise paper should be returned
before the exercise session on Friday, January 28.)

e The course assistant will demonstrate ‘model’ solutions to the
exercises.



Evaluation

The course grades will be based on the weekly home assignments and a
home exam.

e The home assignments constitute 25% of the grade. Each returned
solution is given 0 — 3 points; at the end of the course, the obtained
points will be summed and scaled appropriately.

e The home exam constitutes 75% of the grade. It will be held after
the lectures have ended — the exact timing will be agreed upon
later on. There will be a few, more extensive assignments that must

be solved within a given time period (e.g., within one week).



Timetable
The course extends over nine or ten weeks (plus lecture breaks).

e The first half will concentrate on traditional regularization
techniques (Staboulis as the course assistant).

e The second half will examine inverse problems from a statistical
view point (Leinonen as the course assistant).



1 What is an ill-posed problem?



Well-posed problems

Jacques Salomon Hadamard (1865-1963):
1. A solution exists.
2. The solution is unique.

3. The solution depends continuously on the data, in some reasonable
topology.



lll-posed problems

Nuutti Hyvonen: The ill-posed problems are the complement of the
well-posed problems in the space of all problems.

Examples:
e Interpolation.

e Finding the cause of a known consequence = inverse problems.

e Almost all problems encountered in everyday life.

When solving an ill-posed or inverse problem, it is essential to use all
possible prior and expert knowledge about the possible solutions.



An example: Heat distribution in an insulated rod

et us consider the problem

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(+,0)=f on (0, ),

where u(-, 1) is the heat distribution at the time ¢t > 0, f is the initial

heat distribution, and the boundary conditions indicate that the heat
cannot flow out of the 'rod’ [0, 7].

Forward problem: Determine the ‘final’ distribution (-, T) € L*(0, ),
T > 0, if the initial distribution f € L*(0,7) is known.

Inverse problem: Determine the initial distribution f € L?(0, ), if the
(noisy) ‘final’ distribution w(-,T) =: w € L?(0, ) is known.
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Forward problem

The solution to the forward problem can be given explicitly:

Z fre™™ T cos(nz),

where {f,}°°, C R are Fourier cosine coefficients of the initial heat
distribution f,ie., f =Y " fn cos(nz) in the sense of L?(0, ).

It is relatively easy to see that the solution operator
Er: f—u(-,T), L*0,7)— L*0,)
satisfies the following conditions:
e F'r is linear, bounded and compact.
e Fr is injective, i.e., Ker(Er) = {0}.
e Ran(FEr) is dense in L?(0, ).

11



Inverse problem

Solving the inverse problem for a general final heat distribution
w € L?(0, ) corresponds to inverting the compact operator
Er : L*(0,7) — L?(0, ), which is obviously impossible.

The unbounded solution operator
E;':Ran(Er) — L*(0,7)

is, however, well-defined. In other words, the inverse problem has a
unique solution if w = Erf for some f € L?(0,7), i.e., the
measurement contains no noise.

Summary:
e If w € Ran(FEr), the third Hadamard condition is not satisfied.
e If w ¢ Ran(Fr), none of the Hadamard conditions is satisfied.

(Due to noise etc., the latter case is usually the valid one in practice.)
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Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always contains some
information about the initial heat distribution.
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Heat distribution at t = 0,0.01,0.1,1 and 10.
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Another heat distribution at ¢t =0,0.01,0.1,1 and 10.
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Comparison of the two at t = 0,0.01,0.1,1 and 10.
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2 Classical regularization methods
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2.1 Fredholm equation
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Separable Hilbert space

A vector space H is a real inner product space if there exists a mapping
(-,-) : H x H — R satisfying

1. (x,y) = (y,z) for all z,y € H.
2. (ax1 + bxra,y) = alxy,y) + b{xa,y) for all x1,29,y € H, a,b € R.
3. (z,2) >0,and (x,2) =0 & = =0.
Furthermore, H is a separable real Hilbert space if, in addition,
1. H is complete with respect to the norm || - || = \/(-, ).

2. There exists a countable orthonormal basis {¢,, } of H with respect
to the inner product (-,-). This means that

(@j, k) =05 and x = Z(x, ©n)pn forall z e H.

n
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Fredholm equation

Let A: Hy — Hy be a compact linear operator between the real
separable Hilbert spaces H; and Hs. In the first half of this course, we
mainly concentrate on the problem of finding x € H; satisfying the
equation

Ax =y, (1)

where y € Hs is given. (In this setting, compact operators are the
closure of the finite-dimensional operators, i.e., loosely speaking
matrices, in the operator topology.)

Examples:

e In the example of Section 1, we have A = Er and
H1 = H2 — L2(O,7T).

e The most important case on this course is H; = R", H, = R™ and
A € R™*™ is a matrix.
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2.2 Truncated singular value decomposition
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Orthogonal decompositions

Let A* : Hy — Hy be the adjoint operator of A : H; — Ho, i.e.,

(Axz,y) = (x, A*y) for all x € Hy,y € Hs.

We have the orthogonal decompositions

H, = Ker(A) @ (Ker(A)): = Ker(4) ® Ran(A4*),
H, = Ran(4)® (Ran(A))* = Ran(4) @ Ker(A4*),

where the “bar’ denotes the closure of a set and

Ker(A) = {x € H; | Ax =0},
Ran(A) = {y € Hy |y = Ax for some z € H;},
(Ker(A)*t = {x e H, | (x,2)=0forall z € Ker(A)}, etc.
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Characterization of compact operators

There exist (possible countably infinite) orthonormal sets of vectors
{v,} C Hy and {u,,} C Hs, and a sequence of positive numbers {\,},
Ak > Ape1 and limy, oo A, = 0 in the countably infinite case, such that

Ax = Z A (T, U ) U, for all x € H; (2)

and, in particular,

Ran(A) = span{u,, } and (Ker(A))* = span{v, }.
(Conversely, if A: Hy — Hs has this kind of decomposition, it is
compact.)

The system {v,,, un, A\, } is called a singular system of A, and (2) is a
singular value decomposition (SVD) of A. (Note that 1 <n < oo or
1 <n < N < oo depending on rank(A) := dim(Ran(A)).)
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Solvability of Az =y

It follows from the orthonormality of {u,} that

P: Hy; — Ran(A4), yw+— Z(y,un>un,

is an orthogonal projection, i.e., P2 = P and Ran(P) L Ran(l — P).

The equation Ax = y has a solution if and only if
y= Py and ZA—%uy,um < 0. (3)
In case that (3) is satisfied, all solutions of Ax = y are of the form
r = xo+ ; %(y,unwn
for some xy € Ker(A).
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Intuitive interpretation of the solvability conditions:

e The first condition, y = Py, states that y cannot have components
in the orthogonal complement of Ran(A) if y = Ax.

e The second condition, i.e., the convergence of the series
1
> sl )
is redundant if rank(A) < oo, in which case Ran(A) = Ran(A). On

the other hand, if rank(A) = oo, this condition is equivalent to
asking that the norm of

=1
r = o+ 7;1 x(y,unwn, xg € Ker(A),
is finite, i.e., the ‘potential solutions’ belong to H;.
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2.2 Truncated singular value decomposition
(cont.)
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Summary of the previous lecture

The problem: Find x € H; that satisfies the equation
Az =y,

where y € Hy is given and A : Hy — H> is a compact linear operator.

Singular value decomposition (SVD):

Ax = Z)\n<x,vn>un for all x € H;.

The solutions: If solutions exist, they are of the form
T = xo+z y,un Un

where 2y € Ker(A).
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Solvability conditions: There exists a solution if and only if

1
Yy = Py and Z)\_2’<y’u”>’2 < 00,

where P is a projection onto Ran(A) = span{u,, }.

The natural way to circumvent problems with the first solvability
condition is to consider the projected equation

Ax = PAx = Py

instead of Az = y. However, this does not help with the second
condition since there is no guarantee that

1
> Py P < o0

for a general y € Hs, if rank(A) = oo, i.e., if Ran(A) is infinite-
dimensional.
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Truncated singular value decomposition (TSVD)

Let us define a family of finite-dimensional orthogonal projections by

Pk :HQ —>span{u1,...,uk}, Yy Z<y7un>u

Due to the orthogonality of {u, },

k

n n:1

and, moreover,

1 1
Z )\2 <Pky7un>|2 - Z )\_2’<y7 un>’2 < ©00.
(Note that one must choose k < rank(A) if the latter is finite.)
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In consequence, the problem

Ax = Pky. (4)
satisfies the solvability conditions (3). The corresponding solutions are
given by

= Zo + ! Plcyaun _x0_|' yaun 'UnEHl
T d ™

By the truncated SVD solution of Ax = y for a given k& > 1, we mean
the x;, € H; that satisfies (4) and is orthogonal to the subspace Ker(A).
Since {v,} span (Ker(A))*, it easily follows that such z, is unique, has
the smallest norm of the solutions to (4), and is given by

"1
Z)\_ yaun

31



An example: Heat distribution in a rod (revisited)

Recall the heat equation

Up = Uypy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(-,0)=f on (0, 7).

The forward solution operator
Er:f—u(,T), Hy=L*0,7)— L*(0,7) = Hy

is characterized by

ET : Up — )\n'Una

where {v, }2° , = {\/7} U {\/7COS )}, form an orthonormal basis

of L?(0,7), and A, — e T > () converges to zero as n — oc.
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In consequence, we have
O
ETf — Z >\n<fa 'Un>'Una
n=0

where the inner product of L?(0, ) is defined in the usual way:

(f.9) = /O fgdx, f.g € L*(0,7).

In this case u,, = v,, (because Er is self-adjoint). Since {v,,}2° , are an
orthonormal basis for L?(0, ), we have

(Ker(Er))* = Ran(Er) = L?(0,7),

i.e., Ep is injective and has a dense range, as mentioned already earlier.
In particular, the projection onto the closure of the range of Er is the

identity operator, i.e., P = 1.
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We thus deduce that there exists f € L#(0, ) such that
ETf = w,

for a given w € L#(0,7), if and only if

oo

i)\i (w,vy)|* = 26”4T2]<w,’vn>|2 < 00,

n=0
which is a very restrictive condition and demonstrates why this inverse

problem is extremely ill-posed.

Finally, note that the truncated SVD solution to this inverse problem is

k k

1 2
fr = Z A—(w,vnmn — Ze” T(w,’vn>vn, k> 0.

n
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The special case: H; = R" and H, = R™
Let H; = R™ and Hy = R™, which means that
Ar =y
IS a matrix equation or, in other words, a system of linear equations. In

particular, A € R™*™,

Since all operators of finite rank, i.e., with finite-dimensional range, are
compact, we have the representation

p
Ax = Z)\J(ZU ViU Z)\ Uj v;rx p < min{n, m},

j=1
where {v;}5_; CR"™ and {u;}5_; C R™ are sets of orthonormal vectors

and {)\J}gzl are positive numbers such that A\; > A\;;1;. (Note that
p = rank(A).)

How can one write this decomposition in a neat matrix form?
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Let us introduce, e.g., by Gram—Schmidt process, complementary sets of
orthonormal vectors {v;}7_ ., and {u;}72 ., such that the completed
systems {v;}7_; and {u;}7., are orthonormal basis for R and R™,
respectively. Moreover, we set \; =0 for j =p+1,..., min{n, m}.

Next, we define three auxiliary matrices:

Vi o= |u,...,v,] € R,
U = [u,...,uy,] € R™*™,
A = diag()\l, e o ey )\min{n,m}) ~ Ran.

Here, A € R™*"™ is a diagonal matrix with the elements

Ay Amin{n,m} on its diagonal; if m > n (resp. n > m), there are
m — n empty rows (resp. n — m empty columns) at the bottom of A
(resp. at the right end of A). Note that due to the orthonormality of
{v;} and {u;}, the matrices V and U are orthogonal:

VIV = vvTt =1 and Uy = Ut = 1.
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A simple computation shows that

p
UANV 2 = Z)\juj(v;rx) = Ax
j=1

for all x € R™. Hence, we have the decomposition

A= UAVT.

This is what we call the SVD in the case of matrices in R™*",
In particular, this is how Matlab understands the SVD.
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min{n,m}

Note, in particular, that the singular values {};},;_; are just
non-negative — earlier they were assumed to be positive —, and
Ran(A) = span{u; | 1 <j <p},
Ker(A) = span{v; | p+1< 7 <n},

= span{u; | p+1 <7 <m},
= span{v; | 1 <j <p}.
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Truncated SVD for a matrix A € R"™*"”

The truncated SVD solution, i.e., the solution of

Ar = Pyy and z L Ker(A), 1 <k<p,

where P, — span{ui,...,ux} is an orthogonal projection, is given in
the matrix framework by

Z)\iy,u] :Z)\i uy —VATUT

j=1"" j=1""

Here, A,i € R™™ ™ is a diagonal matrix, with min{m,n} number of
non-negative elements 1/\q,...,1/A;,0,...,0 on its diagonal.
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For the largest possible cut-off £ = p, the matrix
Al = AT = VAU = VATU"

is called the Moore—Penrose pseudoinverse. It follows from the above
material that 7 = ATy is the solution of the projected equation

Ax = P,y = Py,

where P : R™ — R™ is, once again, the orthogonal projection onto
Ran(A). However, since the smallest non-zero singular value )\, is
typically extremely small in inverse problems, the use of pseudoinverse is

often very sensitive to inaccuracies in the data y.
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An example: Heat distribution in a rod (revisited)

Recall once again the heat equation

Ut = Ugy in (0,7) x Ry,
U (0, ) = ug(m,-) =0 on R,
u(-,0)=f on (0, 7).

Our plan is to discretize the dependence on the spatial variable =, and
then investigate the properties of the corresponding inverse problem

numerically.

To begin with, we introduce the step size h = 7/100 and the grid points
r; = jh, 7 =0,...,100. Furthermore, we denote U;(t) = u(x;,1).
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We approximate the second derivative of u with respect to x at the
point (z;,t) by the difference rule:

1 .
o (25,8) & 3 (Uja () = 205(8) + Upna(8)) . 1< <99,

Furthermore, we discretize the boundary conditions by requiring that
1 1
h h
By solving this for Uy(t) and Ujgo(t) and substituting into the preceding

ux(O,t) ~ (Ul(t) — Uo(t)) =0 (Uloo(t) — Ugg(t)) ~ ux(w,t).

difference rule, we obtain altogether that

Uoo(1,t) A = (“UL(E) + Ua(t)

72
1 :

Uy (T5,1) A 72 (Uj-1(t) —2U;(t) + Uj11 (1)) 2 <7 <98,
1

Uy (Tog, 1) A~ 72 (Uos(t) — Uggl(t)) -
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Denoting U(t) = (Ul (t), Cee Ugg(t))T and F' = (f(:l?l), c e ey f(xgg))T
and plugging the above approximations into the heat equation, we end
up with a set of ordinary differential equations:

U'(t) = BU(t), tecR,,
U(0) = F,

where B € R?7*9 is a certain tridiagonal matrix (see next slide).

The forward solution corresponding to this space-discretized problem can

be given with the help of the matrix exponent function as
U(T) = AF,

where A = A(T) =elP and T > 0.
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In Matlab, the matrices B and A = e!® can be formed by the following
script, which also forms the SVD and plots the singular values for A:

= 0.1; % say

100;

pi/N;

diag(ones(N-2,1),-1) - 2xeye(N-1) + diag(ones(N-2,1),1);
1,1) = -1; % the left boundary condition

N-1,N-1) = -1; % the right boundary condition

B = B/h~2;

A = expm(T*B) ;

[US V] = svd(A); % SVD

semilogy(diag(S), ’LineWidth’, 2);

0 w5 = 4
I

(
(
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Let us next form a ‘wedge function’, which serves as the initial heat
distribution, and compute the corresponding final distribution at
T = 0.1:

x = linspace(h,pi-h,N-1); % the grid points
a = 40/3/pi; bl = -8/3; b2 = 20/3; % coefficients
f = [a*x(1:35) + bl, -a*x(36:end) + b2]7’;
ind = £ > 0;

f = f.*xind;

w = Axf; ¥, final distribution

plot(x, f, ’k?, ’LineWidth’, 2);

hold on

plot(x, w, ’r’, ’LineWidth’, 2);

axis ([0, pi, 0, 2.1])

hold off
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Let us be a bit silly and try to recover the initial heat distribution by
inverting A:

f_stupid = A\w;
plot(x, f_stupid, ’LineWidth’, 2);

which results in a catastrophe as demonstrated on the next slide. This is

not surprising since writing
rank (A)

in Matlab, gives the value 18. In other words, from Matlab’s numerical
point of view, A has only 18 linearly independent columns — in
particular, A is not (numerically) invertible.
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Let us be more clever and compute the truncated SVD solution for
k = 18:

k = 18; % the (numerical) rank of A

d = diag(S); % the singular values

idk = [1./d(1:k); zeros((N-1)-k,1)]; % invert only 18
iBk = Vxdiag(idk)*U’; % the corresponding ’inverse’
fk = iBk*w; % the ’solution’

plot(x, f, ’k’,’LineWidth’, 2); hold on

plot(x, fk, ’LineWidth’, 2); hold off

We have, actually, committed a severe inverse crime: If an inverse
problem is solved using the same discretization with which the data was
generated, the results are typically overly optimistic. This problem could
be circumvented, e.g., by interpolating onto a sparser grid before the
inversion. The 'inverse crime effect’ can also be reduced by the addition
of artificial noise.
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In practice, the measurement is always inaccurate. Let us thus add just a
tiny bit of noise in the measurement — so tiny that one could barely
recognize it with naked eye. (In fact, this noise level corresponds
approximately to the discrepancy between data sets simulated with the
above introduced difference scheme and with an alternative method
based on FFT and the SVD of the original solution operator E7r.)

wn = w + 0.001l*randn(N-1,1); % noisy data
fkn_stupid = iBk*wn;
plot(x, fkn_stupid, ’LineWidth’, 2);

As demonstrated on the next slide, this approach does not work

anymore. The reason is the following: The inverse of the 18th singular
value is approximately 3.15 - 1012, which means that the (ever so tiny)
component of the noise vector in the direction v;g is heavily magnified.
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By trial and error, we decide to take the largest £ = 8 singular values
into account when computing the truncated SVD solution:

k = 8;

idk = [1./d(1:k); zeros((N-1)-k,1)];
iBk = V*diag(idk)*U’;

fkn = iBk*wn;

plot(x, f, ’k’,’LineWidth’, 2);
hold on

plot(x, fkn, ’LineWidth’, 2);

hold off

This is pretty much the best one can do without additional information
about the shape of the initial heat distribution. (For example, if we knew
beforehand that f is piecewise linear, such information could be
incorporated in the inversion algorithm, which would surely result in
better reconstructions.)
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Summary of the previous lecture

The truncated SVD solution: For N > k£ < rank(A), there exist
unique z € Hy such that

Az, = Py and xr L Ker(A).

where Py : Hy — span{uy,...,u} is an orthogonal projection. This

solution can be given as

"
Z)\_ yaun
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SVD notations for matrices : For a matrix A € R™*" the SVD is
usually written as

A =UAVT,

where A € R™*™ has the (non-negative!) singular values on its
diagonal, and the columns of V € R™"*™ and U € R™*™ are composed

of the (extended!) orthonormal basis {v;}7_; and {u;}7", respectively.

The truncated SVD solution for 1 < k£ < p :=rank(A) is given by
L — VALUTy

where A € R™*"™ has the elements 1/Aq,...,1/Ag,0,...,0 on its
diagonal. The matrix AT = VA]TOUT is called the Moore—Penrose
pseudoinverse of A.
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Morozov discrepancy principle

(Let us return to the case where Hy and H are general separable real

Hilbert spaces, and A : Hy — H is a compact linear operator.)

To make the truncated SVD a more useful tool, one should come up
with some rule for choosing the spectral cut-off index &£ > 1 appearing in
the truncated SVD problem

Ax = Py and x 1 Ker(A).

Unfortunately, it is difficult (if not impossible) to invent a reliable
general scheme of doing this.

However, there exists a widely used rule of thumb called the Morozov
discrepancy principle.
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Assume that the measurement y € Hs is a noisy version of some
underlying ‘exact’ data vector yg € Hy. Furthermore, suppose that we
have some estimate on the discrepancy between y and yy, i.e.,

ly — vol| = €>0.
For example, it may be known that
Yy = Yo +n,

where the vector n € H, is a realization of some random variable with
known probability distribution. Knowledge about the statistics of n
could be due to, e.g., calibrations of the measurement device.
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The idea of the Morozov discrepancy principle is to choose the smallest
k > 1 such that the residual satisfies

ly = Azi]| < e.

Intuitively this means that we cannot expect the approximate solution to
yield a smaller residual than the measurement error — otherwise we

would be fitting the solution to noise.

Does such k exist?

Yes, it does if e > |Py — y

, as explained below.
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If rank(A) = oo, it follows from Ran(A) = Ran(P) L Ran(l — P) that

lAz, —yl* = [(Azr — Py) + (Py —y)|*
= || Az — Py|® + [|(P — Dy
= ) yu)?+ (P =Dyl
n=k-+1

— pr o yH2 as k — o0,

which is the best one can do since inf,cran(a) ||z — yl| = || Py — yl| by
virtue of the projection theorem. (However, there is no guarantee that
| k|| would not explode as & — o0.)

On the other hand, if p = rank(A) < oo,

Az, —y|l = ||1Poy —yll = [Py —yll-

(Usually, one should not choose this large spectral cut-off in practice.)
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2.3 Tikhonov regularization
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Motivation of Tikhonov regularization

As pointed out on the previous slide, the norm of the residual
Az — y|

is minimized by the sequence of truncated SVD solutions {x} as k
tends to rank(A). Unfortunately, when inverse/ill-posed problems are

considered, we typically also have
|zk]| — oo as k — rank(A).

(If rank(A) = oo, this can be understood literally; if rank(A) = p < oo,
this should be understood in the sense that the x,, is usually rubbish —
especially, if the measurement y is noisy.)

As a consequence, it seems well-motivated to try minimizing the residual

and the norm of the solution simultaneously.
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Tikhonov regularized solution

A Tikhonov regularized solution x5 € Hy is a minimizer of the Tikhonov
functional

Fs(z) = || Az —y|* + dl|z]",

where § > 0 is called the regularization parameter.

Theorem. A Tikhonov regularized solution exists, is unique, and is given
by

An
A2 +

p
vy = (A*A+0I)TAy = )

n=1

(Y, Up ) Uny,

where p = rank(A) < oo.
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Proof: Let us prove this claim only in the case that H; = R" and
Hy; = R™; the general result follows from the same ideas, but requires
some more sophisticated functional analysis.

To begin with, note that
z (AYA+ 6z = ||Az|® +6]jz]]® > dlz||* >0

if £ 0. In particular, AYA + 61 € R™ ™ is injective, which means that
it is invertible due to the fundamental theorem of linear algebra.

Hence,
Ts 1= (ATA + 5])_1ATy c Hy

is well-defined.
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Let {)\;},_, be the positive singular values of A, and {v;};_; and

{uj}§:1 the corresponding sets of singular vectors that span Ker(A)+

and Ran(A), respectively.

We expand x5 = > (v z5)v; + Qxs, where Q : R™ — Ker(A) is an
orthogonal projection. According to the first exercise of the first exercise

session,
p
(ATA+6D)xs = > (A +6)(v] z5)v; + 0 Qus.
j=1
Similarly,
p
Aty = Z)‘J (u;ry)’q7
j=1
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Equating these two expressions results in

Aj

(vjz5) = W(u}‘y)? 1<y <p,
and Qx5 = 0, which altogether means that
Py p
Ts = Z 2 :_5 Z y,un>vn.

n=1
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Finally, consider x = x5 + z, where z € R" is arbitrary. We have
Fs(x) = |(Azs —y)+ Az||® + 6||zs + 2|°

= [|Azs — ylI* + 2 (A2) " (Azs — y) + [ Az|
+0 (|lws]|® + 22 s + ||12]]°)

= Fi(ws) + [|Az]* + 0]|z]I°
+227 (ATA+61) 25 — A'y)

—  Fs(xs) + || Az||® + 0||2||? > Fs(xs),

where the equality holds if and only if z = 0. This shows that
rs = (AT A+ 6I)"t ATy is the unique minimizer of the Tikhonov

functional.
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Summary of the previous lecture

Morozov discrepancy principle: According to the Morozov discrepancy
principle, for the truncated SVD solution x; € H; one should choose the
smallest spectral cut-off index N 3 k < rank(A) such that

||A5Ck _yH S €,

where € > 0 corresponds to the anticipated inaccuracy in the data vector
y € Hy. How to estimate such € is not trivial — one can even argue that
it is not unambiguous. Be that as it may, k is uniquely determined by

the Morozov discrepancy principle if

ly — Py|| < e.
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Tikhonov regularization: The Tikhonov regularized solution x5 € H; is
the unique minimizer of the Tikhonov functional

Fs(z) = [|[Az —y|I* +dllz*, 6 >0.

It is given explicitly by the formula

1 4 An
25 = (AT A+ Ay = 3 Sy, un)vn

Note that the family of Tikhonov regularized solutions {5 }scr, is
parameterized by the positive real parameter § > 0. (In the case of

truncated SVD, the regularized solutions are parameterized discretely as
{xr},_{, where p = rank(A).)

72



Properties of the Tikhonov regularized solution

The Tikhonov regularized solution has the following intuitive properties.
The proof of this theorem is omitted.

Theorem. Let P : Hy — Ran(A) be an orthogonal projection. The
residual ||Axs — y|| is strictly increasing as a function of § and it satisfies

lim [Azs —y[| =[Py -yl and  lim [[Az; —y| =[]yl
—0 d— 00

Moreover, if Py € Ran(A), then x5 converges to the solution of the
problem

Ax = Py and r 1 Ker(A)

as 0 — 0. On the other hand, if Py ¢ Ran(A), then the norm ||xs]||
tends to infinity as § goes to zero.
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The Morozov principle for Tikhonov regularization

Assume once again that the measurement y € Hs is a noisy version of
some underlying ‘exact’ data vector yy € Ho, and that

ly —vol = e>0.

In the framework of the Tikhonov regularization, the Morozov
discrepancy principle advises to choose the regularization parameter
0 > 0 so that the residual satisfies

ly — Azs|| = e.
Such a regularization parameter exists if
ly = Pyl < e < flyll.

This follows from the above theorem because the residual ||y — Axs]| is
continuous with respect to 9.
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Tikhonov regularized solution for matrices

Assume once again that H; = R™ and Hy = R™. In this case, the

Tikhonov functional can be given as

F(S(CIZ)

A
VoI

0

: I e R"*"™ 0eR". (5)

It is interesting to notice that the normal equation corresponding to this

least squares problem is (see 3. exercise of 1. exercise session)

or equivalently

17T

A
VoI

VoI
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Bear in mind that one does not, actually, need to form this normal
equation in Matlab when using Tikhonov regularization: After defining

A
K = e R(ntm)xn and z = Y e RVT™,

VoI 0

the command
xdelta = K\z

computes the Tikhonov regularized solution.

Explanation: For non-square matrices the mldivide command of
Matlab tries to solve the corresponding least squares problem. As unique
minimizer is known to exist, this corresponds to multiplying z from the
left by the Moore—Penrose pseudoinverse of K (see 3. exercise of 1.
session). As all n singular values of K are larger than v/§ (see 1.
exercise of 2. session) this pseudoinverse is well-behaved.
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An example: Heat distribution in a rod (revisited)

Recall the discretized inverse heat conduction problem that was
discussed during the second and third lectures. Let w be the simulated
heat distribution at T=0.1 with the ‘wedge function’ as the initial data,
and A the corresponding propagation matrix A=expm(TB). We add the
same small amount of noise as previously and compute the Tikhonov

regularized solution:

wn = w + 0.001*randn(N-1,1);
zn = [wn; zeros(N-1,1)]; % augmented data vector
K = [A; sqrt(delta)*eye(N-1)]; % augmented system matrix

fdelta = K\zn; % Tikhonov regularized solution

7



We do this for three different values of the regularization parameter

§ =1 (too large), 6 = 107® (too small), and § = 5.95 - 10~°, which
corresponds to the Morozov discrepancy principle: We assume here that
the discrepancy between the measured data and the underlying ‘exact’
data equals the square root of the expectation value of the squared norm
of the noise vector, i.e.,

e = 1v99.0.0012 ~ 9.95.10"3.

Note that the value of § given by the discrepancy principle depends on
the particular realization of the noise vector even though ¢ does not.

The expectation value of the norm of the noise vector would be as — if
not more — logical choice for ¢, but it is more difficult to write down
explicitly. (Luckily, these two choices do not differ that much in the
considered case: numerical tests suggest that the latter gives

€~ 9.92-1075))
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Generalizations of Tikhonov regularization
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Tikhonov regularization for nonlinear problems

Let us briefly consider the nonlinear case, where A : H; — H> is a
nonlinear operator and the examined equation is of the form

A(x) = .

A standard way of solving such a problem is via sequential linearizations,
which leads to solving a set of linear problems involving the derivative
operator of A.

As an example, in Newton's method one would first pick an initial guess
xro € Hy and then try to produce the (5 + 1)th iterate by solving the
linearized problem

A(xj) + A(xj)(xjp1 —x5) =y,  j=0,1,...,

recursively for z;41. (In the general setting A’ is the Fréchet derivative
of A, but for finite-dimensional operators it is just the Jacobian matrix.)
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Unfortunately, if large alterations of x produce only small changes in
A(x), i.e., if the original equation is ill-posed, there is no guarantee that
the corresponding linearized problems can be solved as such — not even
in the least squares sense. Hence, regularization is needed.

Unlike the truncated SVD method, Tikhonov regularization generalizes
easily to this nonlinear framework. Now, it amounts to searching for
xs € Hy that minimizes the functional

Fs(z) = [|A() —ylI* + 8]z, >0

Since Fj is no longer quadratic in z, it is not clear that a unique
minimizer exists. Furthermore, even if a Tikhonov regularized solution

exists, it cannot usually be given by an explicit formula.
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Be that as it may, one can try to minimize F5(x) by using some
nonlinear optimization technique. One — but probably not the best —
way of doing this, is to pick an initial guess x50 € H; and then
recursively define the (j + 1)th iterate x5 ;11 € H; to be the unique
minimizer of the z; ;-dependent Tikhonov functional

~ 2
Fsi(x) = ||A(ws;) + A'(xs5)(x — x5,) — yl|* + 6|22
= ||A (z5,)x — [y — A(zs,) + A (z55)x5,4]|)° + 8|22,

where the dependence of A on z has been linearized with z; ; as the
base point. Since this Tikhonov functional is of the ‘standard form’,
T5i+1 can be given explicitly with the help of A'(z5,), A(x5.), x5, ¥
and J. (In practice, evaluating A’(x5 ;) is often the most difficult part.)

Combining this with some reasonable stopping criterion does indeed give
reasonable solutions for many nonlinear inverse problems.
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More general penalty terms

A more general way of defining the Tikhonov functional is
F5(z) = ||Az — y||* + 6G(z),

where the penalty function G : H; — R takes non-negative values. The
existence of a unique minimizer for this kind of functional depends on the
properties of (G, as does the workload needed for finding the minimizer.

One typical way of defining GG is
G(x) = ||L(z — 20)|%, (6)

where xo € Hy is a given reference vector and L is some linear operator.
The choice of xy and L reflects our prior knowledge about the ‘feasible’

solutions: Lx is some property that is known to be relatively close to the
reference value Lz for all reasonable solutions. (In standard case o = 0
and L = I, the solutions are ‘known’ to lie relatively close to the origin.)
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The numerical implementation of Tikhonov regularization with G of (6)
Is approximately as easy as for the standard penalty term:

In the case that H; = R™ and Hy = R™, the operator L is just some
matrix in R**™ and the Tikhonov functional can be given as

Fs(z) = |[Kz — 2| (7)

where

A Y
K = and z =
VoL V6 Lxg

Assuming that the matrix L is chosen so cleverly that all n singular
values of K are (well) larger than zero, the Tikhonov regularized solution
can be computed in Matlab by applying the pseudoinverse of K on z by
the command

xdelta = K\z
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Explanation: As shown in 3. exercise of 1. session, all minimizers of (7)

satisfy the normal equation
K'Kr = Kz

On the other hand, it was proved in 1. exercise of 1. session that the
symmetric matrix KT K € R"*" has n positive eigenvalues that are the
squares of the singular values of K. In particular, this means that K1 K
is invertible, and thus there is exactly one minimizer for (7). This is
given by KTz due to 3. exercise of 1. session.

(The fact that a symmetric matrix with nonzero eigenvalues is invertible

follows, e.g., from the eigenvalue decomposition.)
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2.4 Regularization by truncated iterative
methods
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For simplicity, in the rest of Chapter 2 we will only consider the case
when

Ar =y
is a system of linear equations, i.e., A € R™*"™, z € R™ and y € R™.

In the literature there are lots of iterative methods for solving this kind
of matrix equations. By “iterative” we mean a method that attempts to
solve the problem by finding successive approximations for the solution,
starting from some initial guess. Typically, computation of such
iterations involves multiplications by A and its adjoint, but not explicit
computation of inverse operators. (The Gaussian elimination is an
example of the opposite: it is a direct, i.e., non-iterative, method that
tries to come up with a solution in a finite number of steps.)
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lterative methods are sometimes the only feasible choice if the problem
involves a large number of variables (sometimes of the order of millions),
making direct methods prohibitively expensive. lterations are especially
practical if multiplications by A are cheap. This is the case, e.g., when A
is a multi-diagonal matrix originating from a difference or element
approximation for some boundary value problem for an elliptic partial
differential operator. (There exist lots of other examples, as well.)

Although iterative solvers have not usually been designed for ill-posed
equations, they often posses regularizing properties: If the iterations are
terminated before “the solution starts to fit to noise”, one often obtains

reasonable solutions for inverse problems.
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2.4.1 Landweber—Fridman iteration
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Banach fixed point iteration

Let 7" : R™ — R™ be a vector-valued function. We say that S C R" is
an invariant set for 1" if

T(S)csS, ie, T(xr)eS forall xeSb.

Moreover, 1" is a contraction on an invariant set S if there exists
0 < k < 1 such that

|T(x) =Tyl < kllx—yl| forallz,yes.
Finally, a vector x € R™ is called a fixed point of T if

T(x) = =

94



Theorem. Let T : R™ — R"™ be a contraction on the closed invariant
set S. Then there exists a unique fixed point x € S of T'. Furthermore,
this fixed point can be found by the following fixed point iteration:

r = lim zy, where z11 = T(xp),
k— o0
for any xg € S.
Proof. The proof — although not very complicated — is omitted.
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A simple example: Consider the function T : x — 22 from R to itself.
(i) Let S =1[0,1/3]. Clearly, T'(S) =1[0,1/9] C S and

T(z) = T(y)| = [2* = y*| = [z +yllz —y| < 2/3]z—yl.
Hence, there is a unique fixed point, which is given by lim x%k =
for every xy € S.
(i) If S = (0,1/3], the fixed point does not anymore lie in S.
(iii) If S =10,1], T(S) =S, but T is no longer a contraction:
T(3/4) — T(1/2)| = 5/16 > 1/4 = [3/4 — 1/2].
In this case there are two fixed points: T'(0) =0 and T'(1) = 1.

(iv) If, e.g., S =0,5/6], there is a unique fixed point 0 € S, but its
existence is not predicted by the fixed point theorem since T is not a

contraction on S.
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Landweber—Fridman scheme

Instead of the original equation
Axr = v,
we will consider the normal equation
AtAxr = Aty

According to 3. exercise of 1. session, x € R" satisfies the normal
equation of and only if it minimizes the residual

Az —y]|.

Moreover, there exist a unique element of R”, given by z' := ATy € R™,
that solves the normal equation and is orthogonal to Ker(A).

(Bear in mind, however, that the use of the pseudoinverse AT is suspect
if the matrix is ill-conditioned, i.e., if Ay /A, > 1, where p = rank(A).)
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We define an affine mapping T : R™ — R"™ by
T(x) = v+ B(AYy — ATAz), B eR.

Notice that any solution of the normal equation is a fixed point of T.
We will show that if 3 is small enough there is only one fixed point of T°
in Ker(A)+, namely 27, and it can be reached by the fixed point
iteration if g = 0.

Theorem. Let 0 < 3 < 2/)\? be fixed. Then, the fixed point iteration
LTr+1 — T(ZCk), Lo = 07

converges towards = as k — oo.
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Proof. Set S = Ker(A)- = Ran(A71). Clearly, T(S) C S since
T(z) = v+ A' (By — BAzx) € Ran(A™')
for all z € Ran(A"'). Thus, S is invariant under 7.

Recall that A and its transpose can be represented with the help of A's
singular system as
p p
Ar = Z)\j(v;r ) and Aty = Z)\j(u?y)vj,

j=1 j=1
where p = rank(A) and \; are the positive singular values of A. The
orthonormal sets of vectors {v;}*_; and {u;}¥_, span S = Ker(A)*
and Ran(A), respectively. In particular,

p
r = Z(U;-Fx)’uj for all x € S.

J=1
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Let , 2 € S and note that also £ — z € 5. We have

T(x)—T(z) = (x—2)—BATA(x — z)

= Z(’U (x — 2))v BZ)P (x — 2)

1

Q.
I

(1= BX)(vj (z = 2))v;.

|
E

1

Q.
I

As )1 is the largest of the singular values, it holds by assumption that
—1 <N -1< B -1<2-1=1, forallj=1,...,p

Hence, we see that
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In consequence,

IT@) =T)? < Y (1= (& —2))°

< w2) (vj(@—2)? = &e— 2|

which shows that T is a contraction on S. As S is also a closed invariant
set for T, we know that there exists a unique fixed point of 7" in S.

To complete the proof, we recall that T = ATy belongs to

S = Ker(A)" and satisfies the normal equation (see exercise 3. of
session 1.). Furthermore, since zo = 0 is in S — it is orthogonal to all
vectors —, the fixed point iteration starting from xo converges to z'. [
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Regularization properties of Landweber—Fridman

From now on we will assume that 0 < 3 < 2/\%.

In the third exercise session, it will be shown that the kth iterate of the

Landweber—Fridman iteration can be written explicitly:
o1
Z)\_ (1= (1= B8AD") (ujy)v;, k=0,1,.... (8)

Since |1 — B3| < 1 by assumption,
1=BX)" =0  ask— oo,
which is what one would expect since

F= Yl

j=1""7
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However, while £ € N is finite, the coefficients of the terms (u;-fy)vj
appearing in the series representation (8) satisfy

La-a-mp - ( -3 (5 Wz)
2 ()

k _
] ) (_1)l—|—1ﬁl)\?l 1’

l—l—lﬁl )\2l

>

I
/pﬂw

S~

—_

which converges to zero as \; — 0 (for a fixed k).

As a consequence, while k is ‘small enough’, no coefficient of (uy)v; in
(8) is so large that the component of the measurement noise in the
direction u; is amplified in an uncontrolled manner. (Recall that the
corresponding coefficients for Tikhonov regularization are )\j/()\? +6).)
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Discrepancy principle for Landweber—Fridman

Let the measurement y € R" be a noisy version of some underlying

‘exact’ data vector yyp € R™, and assume that
|y — yol| = €>0.

The Morozov discrepancy principle works for the Landweber—Fridman
iteration in approximately the same way as for the truncated SVD and
the Tikhonov regularization: Choose the smallest £ > 0 such that the
residual satisfies

ly — Az < e
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Such a stopping rule exists if
e > |ly — Pyl = [ly — A(ATy)]l,

where P = AAT (see 1. ses., 2. ex.) is the orthogonal projection onto
the range of A. Indeed, since the sequence {zj}72, converges to
[y — AxT|| there exists k = k. € N such that

1
|z — 2™ < (e = [ly — AT])),
1A

! = Ay, for any € >

and thus by the reverse triangle inequality,

ly — Azy|| = ly — AzT|| < ||(y — Azy) — (y — AzT)|
< Ay — 27|
< ey — Az,

which just means that ||y — Azy|| <€
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An example: Heat distribution in a rod (revisited)

Recall again the discretized inverse heat conduction problem that was
discussed during the second and third lectures. Let w be the simulated
heat distribution at T=0.1 with the ‘wedge function’ as the initial data,
and A the corresponding propagation matrix A=expm(TB). We add again
the same small amount of noise to the measurement:

wn = w + 0.001*%randn(N-1,1);

and use the Morozov discrepancy principle with

e = v99.0.0012 ~ 9.95-10 3.

Because the largest singular value of the solution operator

Er : L*(0,7) — L?(0,7) in the corresponding infinite-dimensional case
is 1, it is reasonable to anticipate that the same is also approximately
true for A. Thus, we choose 3 =1 < 2/1 ~ 2/)\%.
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The implementation of the Landweber—Fridman iteration with the
Morozov discrepancy principle in Matlab is straightforward. Bear in
mind, however, that matrix-matrix products are far more expensive to
compute than matrix-vector products. Hence, you should either compute
and store the product ATA before you start iterating or use parentheses
to avoid computing this product during the iteration:

flw = flw + betax(A’*wn - A’*x(A*xflw));

With the particular realization of the measurement noise, the Morozov
discrepancy principle was satisfied by the iterate corresponding to

k = 5712. In the following, we visualize the evolution of the
Landweber—Fridman iteration for £k = 1,2, 7, 20, 54, 148, 403, 1096, 2980,
show the residual as a function of k, and plot the solution corresponding
to the discrepancy principle.
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2.4.1 Kaczmarz iteration and ART

112



Partition of the original problem

Let us continue to consider the matrix equation
Ax = v,

where A € R™*"™ x € R"™ and y € R™.

Suppose that we can write the system matrix A in the form

A = o Aj e RFX G5 =1,...1,

where ki + - -+ + k; = m and each submatrice A; is assumed to have k;
linearly independent row vectors, i.e., rank(A,) = k; < n. In particular,
A; defines a surjective mapping from R™ to R*/. (Recall that the rank

of a matrix equals the number of linearly independent columns/rows.)
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Similarly, we decompose y € R™ into [ subvectors:

Y1

Yl

, y, ERFI G =1,...,1

Now, the original equation can be given as the system

AjCC:yj, ]:1,,l

The jth of these matrix problems is composed of k; < n linearly

independent linear equations, and thus the corresponding 'solution space’

= {$€Rn|Aj£U:yj}

is a n — k; dimensional hyperplane in R™. (Notice that this hyperplane

is a subspace, i.e., it passes through the origin, if and only if y; = 0.)
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The Kaczmarz sequence

Although X is not in general a subspace, we can define an orthogonal
projection P; : R®™ — X by requiring that

Pize X; and (I —Pj)z L (wg —ws)

for all z € R™ and w;,wy € X;. In other words, P;z is the point closest

to z in X;. Furthermore, we define the sequential ‘projection’
P :R"* — R"™ via
73 — 7)[73[_1 “. 732731.

The Kaczmarz sequence {xj}7°, C R™ is defined recursively as

Tr+1 = Py, xo = 0.
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Theorem. Assume that X = ﬂ;zl X; # 0, i.e., the original equation
has at least one solution. Then the Kaczmarz sequence {x}7>, C R"
converges to the minimum norm solution as k goes to infinity. In other

wordes,

lim 2, = ',
k— o0

where 7 = ATy satisfies Ax" =y and 7 L Ker(A).

Proof. The text book presents the (relatively complicated) proof in the
more general case where A operates between separable Hilbert spaces.
Here, we omit the proof.
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Algebraic reconstruction technique (ART)

Let us consider the special case where the original problem Ax = y,
A € R™*"™ is partitioned into m subproblems, i.e., linear equations:

_ . _ .
Ajx = ajx = yj, 7=1,...,m,

where a is the jth row of A — with a; € R" treated as a column
vector — and y; € R is just the jth component of the vector y € R™.
Notice that in this case the condition that A; : R™ — R is a surjection
for every 1 < 5 < m is equivalent to requiring that A does not have any

empty rows.

The Kaczmarz iteration corresponding to this setting is called the
algebraic reconstruction technique (ART) — at least, this is what we
call ART on this course. ART is used extensively in X-ray tomography.
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Examples of ART iterations

Let us first consider the case where

1 1 1
A = and y =
-1 3 2

In particular, A is invertible and the corresponding hyperplanes, i.e., lines
in R?, are given by

X = {ZL’ = (ZEl,xg)T c R2 ’ r1 + T = 1},

Xy = {x=(21,20)" €R?*| — 2y + 325 =2},
In this case, the ART algorithm should converge towards the unique

solution & = (1/4,3/4)™. In the following, we visualize each projection
by P;, 7 = 1,2, not just the sequential projections by P = PyP;.
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Let us then add one row to A and one component to y:

1 1| [ 1]
A = ~1 3 and y = 2 1,
1 0 1

which adds the third hyperplane
X3 = {z=(21,22)" €R? | 2 =1},

into play.

In this case, the equation Ax = y does not have a solution. The ART
iteration seems to converge to a point on X3 depicted by an asterisk in
the following figure — note that this does not mean that nothing
happens within each iteration step. For comparison, the 'ring’” marks the
least squares solution 27 = ATy.
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Finally, we return to the case of square matrices, but choose A so that
its rows are somewhat ‘closer’ to being linearly dependent:

0 1 1
A = and y =
-1 3 2

Once again, A is invertible and the corresponding 'solution hyperplanes’

are given by

X, = {z=(21,25)" €R?* | 25 =1},
Xy, = {x=(21,20)" €R?*| — 2y + 325 =2},

The ART algorithm converges towards the unique solution = = (1,1)1,
but extremely slowly.
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Computation of the projections P,

Consider still the equation Az =y, A € R™*™, and assume still that

there exists a partition

A= ) Aj S Rijn, Yy =
A Y

L.
’ ijRja

such that each A; is surjective, i.e., rank(A;) = k; < n. As before, let

X; denote the (non-empty) hyperplane composed of the solutions to

Ajx =1y;, and P; : R" — X the orthogonal projection onto such

hyperplane. Furthermore, we define

Qj :R”—>Ker(Aj), ]:1,

to be the orthogonal projection onto the kernel of A;.
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In the fourth exercise session, it will be shown that
Pj$ — Z—|—Qj(56 — Z)

for all x € R™ and any 2z € X.. In particular, this formula is independent
y J P P

of the particular choice of z.

Lemma. The projection P; can be written explicitly as
Pjil? = T+ AJT(AJA;I‘)_l(yJ — ij)

forallz e R*and j=1,...,1.
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Proof. We start by proving that AjA;-F € R¥i*%i is invertible. Since
A R" — R¥i is surjective, it follows that

Ke]r(A;-r)L = Ran(4;) = R".

Hence, Ker(Aro) = {0}, i.e., A;f is injective. This means, in fact, that
also A; A7 is injective:

AjA;-Fz:O = zTAjA;J-jz:O = ||A;-F2H2:O = 2z =0.

Due to the fundamental theorem of linear algebra, the injective square

matrix AjA;-T is invertible.

Fix an arbitrary £ € R™ and let us write
Pj$ — Z—|—Qj(56 — Z)

with some z € X, as suggested before the lemma.
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Since @; : R™ — Ker(A4;) is an orthogonal projection, I — (Q); maps R"
onto Ker(A4;)+ (and is, in fact, also an orthogonal projection). Hence,
we have

r—Piz = (I —Q;)(x— z) € Ker(4;)" = Ran(A7).

j
This means that there exist w € R/ such that
T
Ajw = z — Pju, (9)
and, consequently,
AjAjw = Ajz — APz = Ajz —y;

because P;x € X;. Solving this equation for w and substituting into (9)

results in

A (A A)) H(Aje — yy) = o — Py,

which completes the proof. []
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Algorithmic implementation of ART

In the case of ART, i.e., when the submatrices A; =aj, j=1,...,m,
are the rows of the original system matrix A, and y;, 7 =1,...,m, are
the components of y, the inverse needed above

(A;A7)7" = (a5a5)"" = 1/]las"

J

is just a real number. Thus, the ART algorithm reads as

Set k=0 and xo = 0;
Repeat until the chosen stopping rule is satisfied:
20 = Lk
for y=1,...,m
2j = zj—1+ (1/[laj|1*)(y; — aj zj-1)a;;
end
Tht1 = 2ms Kk —k+1;

end

128



Discrepancy principle for the Kaczmarz iteration

As you probably guess, we let the measurement y € R™ be a noisy
version of some underlying ‘exact’ data vector yy € R™, and assume that

ly —woll = €¢>0.

The Morozov discrepancy principle works for the Kaczmarz iteration as
follows: Choose the smallest £ > 0 such that the residual satisfies

ly = Azl < e

if such k exists.
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Unlike for the truncated SVD and the Landweber—Fridman iteration, the
condition
e > |ly — Py,

where P is the projection onto the range of A, is not sufficient to
guarantee the existence of such a stopping index k£ without further
assumptions. As an example, in the second example of this lecture

|y — Axg|| ~> 0.98 as k — oo,

while ||y — Pyl ~ 0.59.

However, one can always try to apply the Morozov discrepancy principle

and hope for the best.
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An example: Heat distribution in a rod (revisited)

Let us once again consider the discretized inverse heat conduction
problem in an insulated rod. We simulate the data in the exactly same
way as above, add the same amount of noise and use the same value of
¢ for the Morozov discrepancy principle. The implementation of ART
with the discrepancy principle in Matlab is straightforward.

With the particular realization of the measurement noise, the Morozov
discrepancy principle was satisfied by the iterate corresponding to

k = 493. In the following, we visualize the evolution of the ART
iteration for k = 1,2,7, 20, 54, 148, 403, show the residual as a function
of k, and plot the solution corresponding to the discrepancy principle.
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2.4.3 Krylov subspace methods
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Krylov subspace methods

The Krylov subspace methods are iterative solvers for (large) matrix
equations of the form Ax =y, A € R"*". Loosely speaking, such
methods try to approximate the solution vector x € R" as a linear
combination of vectors of the type u, Au, A%u etc., with some given
u € R™. If multiplication by A is cheap — e.g., if A is sparse —, the
Krylov subspace methods are especially efficient.

On this course, we only consider the most well-known Krylov subspace
method, the conjugate gradient method. Other methods of this class
include, e.g., the generalized minimal residual method (GMRES), and
the biconjugate gradient method (BiCG).
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The regularizing properties of the conjugate gradient method can be
analyzed explicitly; see, e.g., the monograph

M. HANKE, Conjugate gradient type methods for ill-posed problems,
Pitman Research Notes in Mathematics Series, 327.

However, here we content ourselves with introducing the basic ideas
behind the conjugate gradient scheme and demonstrating numerically

how application of an ‘early stopping rule’ provides reasonable solutions
for inverse problems.
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Assumptions on A and a related inner product

We assume that the system matrix A € R™"*" is symmetric and positive
definite, i.e.,

AT = A and wrAu > 0 for u # 0.

In particular, this means that the square matrix A is injective, and
consequently invertible due to the fundamental theorem of linear
algebra. It is easy to see that the inverse A=! € R™"*" is also symmetric

and positive definite.

We define an A-dependent inner product and the corresponding norm via

(u,v) 4 = u'Av and |ul|a = {u,u>114/2.

It follows from the assumptions on A that (-,-)4 : R” x R” — R really
is an inner product on R", and consequently || - ||4 : R™ — R is a norm.
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The error, the residual and a minimization problem

Let 2, = A~ 'y € R™ be the unique solution of the equation
Axr =y

for a given y € R™. We define the error and the residual corresponding
to some approximative solution € R" by

e = Ty — X and r =y— Axr = Ae.

Let ¢ : R™ — R be the A-dependent quadratic functional

o(a) = lle|h = e'de = rA7lr = ||}
Since || - |4 is a norm, ¢(x) is non-negative and equals zero if and only if
e =0 — T = Ty.

Hence, minimizing ¢ is equivalent to solving the original equation.
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Minimizing ¢ in a given direction

Evaluating ¢ would require the knowledge of x, or, equivalently, that of
A~ since our ultimate goal is to approximate the solution .

iteratively, assuming it known is not a feasible option.

Fortunately, if we have some initial guess x5 € R™ and some search
direction 0 # sy € R™, we can find the minimizer of ¢ over the line

So = {x €R" | z =29+ asg, a € R}

without knowing z..
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Lemma. The function
Q Qb(ilf() - 0480)7 R — Ra

attains its minimum at

o = an — SETO - SOTT()
— 0 i= —af = —m———
Isoll% 56 Aso’

where rq is the residual corresponding to the initial guess:

ro = y — Axg.
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Proof. The residual corresponding to = = zg + asg is
r=y—Ar = y— Azxg — aAsy = rog — aAsg.
In consequence,

px) = rtA 1y
= (ro—adsg) A" H(rg — adsp)
= a?sy Asg — 2asp g + 1o Ao,
which, as a function of «, is a parabola that opens upwards, because

SOTASO > 0. Hence, its minimum is at the unique zero of the derivative

with respect to «, i.e., at o = ay. []
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About the choice of the search directions

Given a sequence of (non-zero) search directions {s;} C R", we can
thus produce a sequence of approximate solutions by first choosing g
and then finding iteratively the minimizer of ¢ on the line passing
through z;. in the direction sj as follows:

Thkt1 = Tk + O Sk, with o =

where 7y, is the residual corresponding to the kth iterate, i.e.,
r. =y — Axp.

Notice that {¢(z1)} is a decreasing sequence of real numbers because
¢(xk+1) is always smaller than — or as small as — ¢(xy).

However, an efficient choice of the search directions {si} is a subtle
Issue.
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Probably, one of the first ideas that comes to mind is to choose
s = —Vo(xr) = 2(y — Axy), k=0,1,...,

because it gives the direction of the steepest descent. However, this does
not in general provide a sequence {xj} that converges fast towards the
global minimizer x. = A~ 'y, as demonstrated by the following example:

Let

1 O 0
A = and Yy = ,
0 5 0

which means, in particular, that
p(x) = ¢z, z®) = (V) +5(z2))2.

The following image shows level contours of ¢ and the sequence
{x}]_, starting from zo = (1,0.3)". The actual solution z, = (0,0)?'
is marked with an asterisk.

145



0.8

0.6

0.4

0.2

-0.4

146

0.5



Minimizing ¢ over a hyperplane

Let {sg,...,sr} be a set of linearly independent search direction. Next,

we consider finding the minimizer of ¢ on the hyperplane
S = {xeR" | x=ux9+ Skh, hERk—H},

where 2o € R" is the initial guess and Sj, = [sq, ..., si] € R*><(F+1),

Lemma. The function
h — ¢(xo + Sph), RFFT SR,
attains its minimum at
h = hy, = (S} ASL) 1St ro,

where ro = y — Axq is the residual corresponding to the initial guess.
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Proof. Let us first prove that S AS;, € RF+UX(k+1) is invertible: Due
to the positive definiteness of A, we have

SFAS,z=0 = 2z'SlAS,z2=0 = S,2z=0,

which means that z = 0 since the columns of S, are linearly
independent. Hence, Ker(S,;FASk) = {0}, i.e, S,;FASk is injective, and
thus (S;' ASy) ™! exists by the fundamental theorem of linear algebra.

The residual corresponding to x = xg + Sih satisfies
r =y — A(xg + Skh) = rg — ASkh,
and thus

d(xg + Sph) = (ro — ASph) A~ (rog — ASLh)
= h'SFTASLh —2rg Sph+rg A .
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In particular, the coefficient matrix S;" ASy, of the quadratic term of
¢(xo + Skh) in h is positive definite:

ut (SE ASK)u = (Spu) "A(Sku) > 0, u € RFFL,

where the equality holds if and only if Sp,u =0, i.e., u = 0. Thus, the
basics of quadratic programming tell us that the unique zero of the
gradient of ¢(xo + Sih) with respect to h, i.e.,

he = (S ASL) 1S,

is the unique minimizer of ¢(x¢ + Sih) over h € RFF1,
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A-conjugate search directions

Since finding the minimizer of ¢ over the hyperplane
S, = {CEGR” ’ x = x9 + Sih, hERk—H}

involves inverting a (k + 1) x (k 4+ 1) matrix, such an approach is not
necessarily very attractive.

On the other hand, as demonstrated by the numerical example above,
minimizing ¢ sequentially in the directions sq, ..., si does not, in
general, result in as good approximate solution as doing the
minimization over the whole hyperplane S; at once. (Clearly, the first
two search directions of the numerical example were linearly
independent, and thus minimization over the hyperplane Ss, i.e., the
whole R?, would have given the global minimizer =, = (0,0)".)

However, the sequential minimization does produce the minimizer over
Sy if the search directions {sq,..., s} are chosen in a clever way.

150



We say that non-zero vectors {sq,...,sr} C R" are A-conjugate if
T
(8iy85)4 = s; As; =0

for i # j. In other words, the vectors {sq, ..., sk} are A-conjugate if
they are orthogonal with respect to the inner product (-, -) 4.

The A-conjugacy condition can be expressed neatly with the help of the

matrix Sy, = [so, ..., 5] € RPX(F+D),
So

STAS, = | | [Aso,..., Asy] = diag(do,d; ..., dy) € REFDX(E+L)
Sk

where d; = s;-FAsj >0,j=0,...,k, due to the positive definiteness of
the matrix A.
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The following theorem demonstrates that it is useful to choose the
search directions to be A-conjugate.

Theorem. Let xo € R™ be an initial guess and assume that the vectors
{s0,...,8k} CR™ are non-zero and A-conjugate. Then, the sequential
minimizer of ¢ over these directions, i.e., x.1 € R™ obtained by the
iteration

T

T 4. 0
SjASJ

Tjr1 — wj—F()éij, with Q; = j:O,...,k,

is the minimizer of ¢ on the hyperplane
S, = {CIZER” ’ x = xo9 + Sih, hERk_H}.

To put it short,

Tri1 = To+ Sphe = x9 + Sk(SkTASk)_ngro.
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Proof. Let a; = (ag, ..., ;)" € R/ With this notation we have

71—1
ZEjZZEO—FZOéiSZ':ZEQ—FSj_laj_l, 7=1,...,k+ 1.
1=0

Moreover the residual corresponding to x; is
ry = Y— ij — (y — ACEO) — ASj_lClj_l = 79— ASj_chj_l.

In particular,

T. _ T TAg, ., . — (T T | |
s;Tj = 8;10— 8; ASj 1a;_1 = s;r0+ 5, [Asg, ..., Asj_1]a;_1,
where the last term vanishes since s; is A-conjugate to {sg,...,5;_1}.
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Hence,
T T

SIT; S: T
77 J .
a; = = : 7=0,...,k.
SJTASJ' SJTASJ'
On the other hand, since {sq,...,s;} are A-conjugate, we have
_ . —1
(S AS,)™ !t = (dlag(sgAso, e SEASk))

—  diag(1/(sg Aso), ..., 1/(sF Asp)),

which means that

S0 T0 Qg
he = (SHASL) 1S rg = (SFAS,) ™! ; —
stro Qg
Consequently, ap = h, and
Tkl = To + Skar = o+ Sih. []
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Summary of the previous lecture

A Minimization problem: Let A € R™"*"™ be symmetric and positive
definite. Instead of solving the original equation Az = y directly, we
consider minimizing the functional

o(z) = (vo—2) Az —1) = etAe = (y—Ax)'A  (y—Az) = rTA

where =, = A~y is the actual solution, and e and r are called the error
and the residual corresponding to the approximate solution z. The
unique minimizer of this functional is the solution of the original
problem, i.e., x..
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A sequence of minimizers: Given an initial guess xy and a set of
non-zero search directions {s; ?:0 C R"™, we define the approximate
solution z;41, j = 1,...,k, recursively as the minimizer of the

functional ¢ on the line
S; ={reR" | x=2;+as;, a € R}

This can be done through the iteration

T,

T 4. 0
SjAS]

Tjr1 — Ly —|—Oéj8j, with Q; =

where r; = y — Ax; is the residual corresponding to z;.
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A-conjugate search directions: The non-zero vectors {sj}fzo are
called A-conjugate if

Si 804 = st As; = 0 for ¢ #£ 7.
J 7 J

If the search directions are chosen this cleverly, the iterate xx, 1 is the
minimizer of ¢ over the whole hyperplane

Sk = {$€Rn’$:x0+skha heRk+1}7

. k
i.e., over all vectors of the form x = xo + > ;_ hjs;, where ho, ..., hy
are real numbers. This minimizer can be given explicitly as

Trt1 = To + Skl he = (Sp ASk)™ 'S 7o,
where S), = [sg, ..., 5] € R?**+1) In particular, z,, is the global

minimizer, 1.e., T,, = Tx.
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A useful corollary about the residuals

If the search directions are chosen to be A-conjugate, we have also extra
information about the residuals:

Corollary. If the non-zero search directions {s; }?ZO C R™ are
A-conjugate, then the residual .1 = y — Az, satisfies

re+1 L span{so, ..., sk},
where the orthogonality is in the sense of the standard inner product.

Proof. Since x;.1 = xg + Sihs, it holds that
ree1 = (y — Axg) — ASkhye = rg — ASih..
In consequence,
7h 180y -y The1Sk] = Thi1 Sk = 10 Sk — by Sp ASE = 0

because h} = (S} ASK) ™ S)tro)t = rd Sk(S;F ASy)™

160



How to construct A-conjugate search directions?

There are many ways to construct a set of A-conjugate search
directions. If one chooses to use Krylov subspaces the result is the
conjugate gradient algorithm:

Definition: The kth Krylov subspace of A with the initial vector
ro =y — Az is defined as

Kir = K(A,ro) = span{rg, Arg, ..., A" 1rq}, k=1,2,....

Note, in particular, that A(Kj) C Kgi1.

Take also note that Kr_1 C Kk, where the dimension of the latter is at
most k, and it is at most one higher than that of the former. (For
example, if g is an eigenvector of A, then the vectors spanning ICj, are
scalar multiples of each other, which means that dim(K) = 1 for all

k > 1. Fortunately, it turns out that this is not a hindrance.)
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The logic of the conjugate gradient algorithm

Let us construct a sequence of A-conjugate search directions inductively.
The leading idea is that, given a set of A-conjugate search direction, we
can either find a new A-conjugate direction or the previous iterate is
already the global minimizer z,, i.e., the unique solution of Az = y.

1. Choose an initial guess ¢ € R".

2. If ro =y — Axg = 0, we have found the solution x, = xg. Otherwise,
set s = ro (, which is, by the way, the steepest descent direction).
Note, in particular, that the set of a single search direction {sg} is

trivially A-conjugate and

IC1 = span{sg} = span{rg}.
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3. Suppose that we have non-zero and A-conjugate search directions
{sj}?;é, k > 1, such that

Km = span{sg,...,Sm_1} = span{rg,...,"m_1}, m=1,...,k,
(10)
where r; =y — Ax;, 7 =0,...,k —1, are the residuals corresponding to

—, of the sequential minimization algorithm.

the iterates {z; f

If r. = 0, the algorithm has converged to x, = z;. Otherwise, we try to
choose another A-conjugate and non-zero search direction s € R™ so
that (10) remains valid if k£ is replaced by k& + 1.
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Assume thus that r; # 0. Since
ry = y— Az =y — A(Tp—1 + p-15k-1) = Tp—1 — p_1ASK_1

and r,_1 and s;_1 belong by assumption to K, the new residual 7
belongs to Kr1. Since 7 is orthogonal to {sg,...,sx_1}, which span
K. and belong to Kxi1, we must have

Kri1 = span{sg,...,Sk_1,Tk} = span{ro,...,Tk—_1,7k}-
Let us try to find the new search direction s in the form

Sk = Tk + Br—15k—1, Br—1 € R.

Note that this kind of vector belongs to K1 and, furthermore,

Kri1 = span{sg,...,Sk_1,7k} = span{sg,...,Sk_1,Sk}-

Consequently, all we have to worry about is the A-conjugacy condition:
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We want to choose Bx_1 € R¥ so that

S;FAsk — SJTATk - ﬁk_lszAsk_l
= (Asj)"ri + Bro1s) Asg—1 =0 (11)
for j =0,...,k— 1. Because {sg,...,Sk_2} C Kxr_1, we have

{Asg,..., Asg_o} C Kxr = span{sg,...,Sk_1},

and thus the vectors {Asq, ..., Asp_o} are orthogonal to ;. Hence, the
A-conjugacy of {sq,...,Sk_1} yields that only the last of the equations
(11) is non-trivial.

Solving this equation for (;_1 results in the needed update rule

T
sk_lArk

Sk = Tk + Br—15k—1, Br-1 = ——5 Y :
Sp—1415k—1
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Conjugate gradient method

To sum up, we have arrived at the following algorithm

Choose xg.
Set k=0, ro=y— Azxg, Sog="0;
Repeat until the chosen stopping rule is satisfied:
ap = (s;7)/ (55 Ask);
Tk+1 = Tk + QkSk;
Tea1 =T — apAsg; % Note: rpi1 =y — Azrp — apAsg
Br = — (s Ari41)/(sy; Asi) 5
Sk41 = Tk+1 + Ok Sk
k+—k+1;
end
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However, the algorithm is usually presented in a slightly different form.
Assuming that the iteration has not yet converged at the iterate xj, we

deduce the following formulae:

Since r, L si_1,

3;57% = (re + Br—15k—1) 1% = [rell?,
resulting in
o Il
SEAS;C'
In particular, since rx11 L span{sq, ..., Sk} = Kri1 O rk, this means
that
2 T ||7“/7~c||2 T 2
Iriedll® = riepa (e — andsi) = =77 — e Ase = Bullrell”
k k
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Solving for B and plugging the obtained formulae for o, and (3 into
the preliminary conjugate gradient algorithm leads to the standard form
of the method:

Choose xg.
Set k=0, o=y — Axg, So =170;
Repeat until the chosen stopping rule is satisfied:
ap = |Irell*/ (s Ask);
Tk4+1 = Tk T+ OSk ;
Thtl = Tk — O ASk;
Be = [l ll*/lIrel?s
Sk41 = Tk+1 + Ok Sk
k—k+1;

end

NB: There is an error in the update formula for xi. 11 in the textbook.
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Conjugate gradient method for inverse problems

According to the above construction, if you apply the conjugate gradient
method to the equation

Az =y,

where A € R™*™ is symmetric and positive definite, you obtain the exact
solution — up to rounding errors — in at most n iteration steps, i.e.,

T, = . = A~ 'y. However, such extensive iterating is not usually
necessary: The algorithm typically converges satisfactorily much quicker;
see, e.g., 2. exercise of the 4. session, where a (pessimistic) convergence
rate is provided.

When dealing with ill-posed problems, one should be even more careful
and terminate the iterations well before convergence, in order to avoid
fitting the solution to noise. One should, actually, be extremely cautious
because the conjugate gradient method often converges very fast.
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Let us be a bit more precise and consider a general ill-posed matrix
equation

Ax = vy,
where A € R™*™ and y € R™ are given.

In some cases, one may have m = n and, in addition, some prior
information stating that A is — at least in theory — positive
(semi-)definite. In such situation, one can apply the conjugate gradient
algorithm directly on this original equation.

In the general case, one may still consider the normal equation
AtAx = Ay,

which corresponds, in essence, to solving the original equation in the

least squares sense.
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Now, the system matrix ATA = (ATA)T € R"*" is symmetric and
positive semi-definite:

uwATAu = [|Aul|* > 0 for all u € (R™ \ Ker(A)).

Hence, the conditions of the conjugate gradient algorithm are almost
satisfied, and one may look for the solution of the inverse problem by
using the conjugate gradient algorithm with A replaced by A'4 and y
by AYy. (When implementing the algorithm in Matlab, bear in mind
that matrix-matrix products are typically far more expensive than
matrix-vector products.)

As a stopping condition, one may try, e.g., the Morozov principle for the
original equation: Terminate the iteration when

ly — Azpl] < e

for some € > 0, which measures the amount of noise in y in some sense.
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An example: Heat distribution in a rod (revisited)

Let us once again consider the discretized inverse heat conduction
problem in an insulated rod. We simulate the data in the exactly same

way as above and add the same amount of noise.

The system matrix A = e’ P, T = 0.1, is symmetric since B is
symmetric. Moreover, the infinite-dimensional version of A, i.e., Er, is
positive definite, and thus it is not far-fetched to assume that A is, at
least, close to being positive semi-definite. (A symmetric matrix is
positive definite if and only if all of its eigenvalues are positive; according
to Matlab the eigenvalues of A are either positive or extremely close to
zero.) Hence, it seems reasonable to try applying the conjugate gradient
method directly to the original equation.
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If we use the same value € = v/99 - 0.0012 = 9.95 - 102 for the Morozov
discrepancy principle as in the previous examples, the conjugate gradient
method becomes unstable before the stopping rule is satisfied. However,
for the value 1.2 -v/99 - 0.0012 the stopping rule is satisfied after seven

Iterations.

In the following, we visualize the evolution of the conjugate gradient
iteration, show the norm of the residual ||y — Azl as a function of k,
and plot the solution corresponding to the (fine-tuned) discrepancy

principle.
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Next, we consider the exactly same problem, but this time apply the
conjugate gradient method to the normal equation. As a stopping rule
we use the Morozov discrepancy principle for the original equation, i.e.,
we stop the iteration when

ly = Azl < e

where we use the ‘standard’ ¢ = v99 - 0.0012 = 9.95 - 10~3.

For some reason, the use of the normal equation makes the algorithm
more stable: the discrepancy principle for this ‘original’ ¢ is satisfied after
seven iterations and the solution looks nicer than when applying the
algorithm directly to the original equation. (Bear in mind, however, that
considering the normal equation makes the algorithm slower since more
matrix-matrix or matrix-vector products need to be computed.)
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An example: Laplace transform

Let f:[0,00) — R be some unknown function and assume that we have

access to noisy samples of its Laplace transform

Lf(s) = /OOOG_Stf(t)dt, s >0,

at some measurement points s;, j = 1,...,m. The task is to
approximate [ using the noisy values {L£f(s;)} 2, as data.

st is typically very small, and hence

Observe that for large t the kernel e~
the ‘tail’ of f does not affect the Laplace transform as much as its
values close to the origin. In consequence, reconstructing f is an

ill-posed inverse problem.
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Discretization

In order to come up with a computational model, we approximate the
integral of the Laplace transform as

T n
Chs) = [ e @~ Y e (), = Lem,
k=1

where t1,...,t, € [0,T] are the nodes and w = (w1,...,w,)" € R" the
corresponding weights of the chosen quadrature rule. Notice that it is
implicitly assumed that e f(t) is 'small’ for all ¢ that are larger than

the threshold T > 0.

For example, if we decided to use the trapezoid rule on an equidistant
mesh in the interval [0, T], we would choose h =T/(n — 1) and

w = (h/2,h,h,...,h,h,h/2)Y  and  t, = (k—1)h

fork=1,...,n.
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The above quadrature rule can be written in the matrix form

y = Az,
where € R™ and y € R™ are given by

z = (f(t1),.... fta)"
Yy = (Ef(Sl),...,,Cf(Sm))T,
and the elements of the matrix A € R™*"™ are defined as

—Sjtk

(A)jk:wke , jzl,...,m, kzl,...
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In the following numerical examples, we choose m = 91 sampling points

on a logarithmic grid:

U —1)

logs; = —log10 + 2
m_

log 10, 7=1,...,m,

where log denotes the natural logarithm. Now, the points {log s; }
form a uniform grid in the interval [—1log(10),log(10)], and thus

{s;}7L; lie in the interval [0.1,10], with half of the points between 0.1
and 1. This reflects our knowledge that the information in the Laplace

transform is — very loosely speaking — concentrated close to the origin.

We set n = 101 and choose the nodes {¢x}?_; and the weights w € R"
according to the Gauss—Legendre quadrature rule in the interval [0, 5].
(One could use something less sophisticated, such as trapezoid rule in
this same interval, as well.)
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Simulation of data

We choose
t3 — 4t? + 4¢, 0<t<2,

f(t) =
0, t> 9.

In this simple case, the Laplace transform can be calculated explicitly

with the help of partial integration:

4 4 . 6 _2
£f(8): §_3_3(2_|—6 8)‘|‘8_4(1—€ 8), S>O
Consequently, we just compute the value of Lf(s) at the chosen
sampling points {s; }7.; using this formula, add realizations of a
normally distributed random variable with zero mean and standard
deviation 107 to each sample, plug the resulting data into the vector 7,

and we are ready to go.
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On inverse crimes

The most obvious form of inverse crime is to use the exactly same
numerical model to simulate the data and to carry out the inversion.
Such a procedure results typically in overly optimistic reconstructions.

Here, this form of inverse crime is avoided because the data is simulated
using an analytic formula and the reconstruction process is based on a
quadrature rule. However, if the explicit form of £f was not known, we
could operate as follows:
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1. Choose two sets of node and sampling points {5,}72% and {ti )7,

2. Use the flrst sets of points, {5;}7% and {tx}2,, and the
corresponding ‘quadrature matrlx A = Ay to compute Lf at the

points {5,}.2%

3. Use interpolation to approximate the value of Lf at the (typically
sparser) set of sampling points {s;}7";, and add noise. (See
interpl and interp2 in Matlab.)

4. Test your inversion method by using the hereby obtained noisy
versions of {Lf(s;)}7L; as data and the ‘quadrature matrix’
corresponding to the sets of points {s;}7.; and {{x};_, as the

system matrix A.

Notice that in ‘real life’ these kinds of problems do not occur because
you do not simulate the data yourself.
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Numerical experiments

In the following, we will apply the considered inversion methods to the
above introduced discretized “inverse Laplace transform problem’:

Ax = y.
If not stated otherwise, we utilize the Morozov discrepancy principle with
e =107%/m ~ 9.5-1073

as the stopping rule, i.e., we terminate the iterations, or pick a spectral
cut-off index, or choose a regularization parameter so that the

approximate solution ¥ satisfies
ly — AZ|| ~ e.

For the exact implementation of the Morozov stopping criterion for
different algorithms, see the material of the previous lectures.
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Laplace transform and the noisy measurements
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Truncated singular value decomposition

The singular value decomposition of A is
A =UAVT,

where A € R™*" has the (non-negative) singular values on its diagonal,
and the columns of V€ R™*™ and U € R™*™ are composed of the

(extended) orthonormal basis {v;}7_; and {u;}",, respectively.

The truncated SVD solution for 1 < k£ < rank(A) is given by
Ll = VA,ZUTy

where A}; € R™™ "™ has the elements 1/\1,...,1/A,0,...,0 on its
diagonal. (The singular values of our A are plotted on the next slide.)

In the following, we show the evolution of x; as a function of k, present
the Morozov discrepancy principle solution and, for comparison, present
the truncated SVD solution for no noise and £ = 21 = rank(A) — 1.

193



10

10

10

10—10

10"

10—20

Singular values of A

10

20

30

40

50

194

60

70

80

90

100



Truncated SVD solutions for Kk =1,....,5
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Morozov discrepancy solution (k = 5)
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Truncated SVD solutions for £ =5,...,8
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Truncated SVD solutions for £k = 21 and no noise

1.2 .

0.8 .

0.4 .

0.2h .

198



Tikhonov regularized solution

The Tikhonov regularized solution x5 € R™ is the unique minimizer of
the Tikhonov functional

|Az —y|* + dll=[*,  &>0.
It is given explicitly by the formula

s = (ATA+51)"tA Y. (12)

If one replaces x in the penalty term of the Tikhonov functional by Lz,
for some L € R'*™, then the identity operator in (335) is replaced by
LTL — at least formally.

In the following, we first use traditional Tikhonov regularization, and
then plug Lz in the penalty term, with L € R™*™ being a difference
matrix that approximates the second spatial derivative on the
interval [0, 5].
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Traditional Tikhonov with § = dy, = 3.6 - 107° (solid),
6 = 10°0\or (slashed) and 6 = 1096y, (dotted)
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Smoothness Tikhonov with &y, ~ 3.8 - 1071 (solid),
6 = 10°0\or (slashed) and 6 = 1096y, (dotted)
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Landweber—Fridman iteration

The Landweber—Fridman iteration produces a sequence of approximate
solutions {z } 72, according to the recursion rule

rpr1 = T(xg), xo = 0,

where
T(x) = v+ B(AYy — A Ax), B e R.

In order to achieve convergence, the free parameter 3 should be chosen
from the interval (0,2/)%), where \; is the largest singular value of A,
i.e., the matrix norm of A. The larger the value of 3 in this interval, the
faster the convergence. Here, || A]| ~ 2.05 and we choose § = 0.45.

In the following, we visualize the evolution of the Landweber—Fridman
sequence and show the solution corresponding to the Morozov
discrepancy principle. (Note that the convergence is really slow; there is
no real possibility for fitting the solution to noise.)
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Approximate solutions z;, £ = 1,101,201, ...
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Morozov discrepancy solution (k£ = 12861)
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Kaczmarz iteration (ART)

The most basic form of Kaczmarz iteration is to take zero as the initial
guess and then iterate by projecting recursively onto the hyperplanes
defined by the rows of the considered matrix equation. If a,;-f c RIxn
denotes the jth row of the matrix A, then this algorithm is as follows:
Set k=0 and zg =0;
Repeat until the chosen stopping rule is satisfied:

20 = Lk

for 9=1,...,m

zj = zj—1 + (1/|laz]1*)(y; — aj zj-1)ay;

end

Tha1 = 2m; k—k+1;
end
In the considered case, ART does not seem to converge for the
original €, and thus we use the discrepancy principle with 1.2¢ here.
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Residual ||y — Ax;| as a function of k
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Approximate solutions z;, Kk =1,...,790
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Morozov discrepancy solution (k£ = 790)
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Conjugate gradient method

With conjugate gradient method one is forced to consider the normal
equation

AtAxr = Aty
In this case, the algorithm can be written, e.g., as follows (here xy = 0):

Choose zo. Set k=0, ro = Aty — AN Axy), so =10;
Repeat until the chosen stopping rule is satisfied:
Rl — AT(ASk),
g = [Irkll?/(sp 26)
Tk41 = Tk + QgSk;
k41 =Tk — Qk<k s
B = llrrea I/ llrel1*s

Sk+1 = Tk+1 + BrSks
k—k+4+1;

end
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Residual ||y — Ax;| as a function of k
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Approximate solutions z;, £ =1,...,5
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Morozov discrepancy solution (k = 5)
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Approximate solutions z,, £k =5,...,17
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Computational methods in inverse problems, part Il

The second part of the course concentrates on the Bayesian approach to
inverse problems.

The lectures are mainly based on the books:

e "'J. Kaipio and E. Somersalo, Statistical and Computational Inverse
Problems, Springer, 2005" (parts of Chapter 3),

e "'D. Calvetti and E. Somersalo, Introduction to Bayesian Scientific
Computing. Ten Lectures on Subjective Computing, Springer, 2007".

216



Statistical inversion

In the statistical approach to inverse problems, the leading idea is to
recast the inverse problem in the form of statistical quest for information.

e Quantities are either directly observable or unobservable.

e Some of the unobservable quantities are of primary interest, others
may be considered to be of secondary interest.

e Quantities depend on each other through models.

e The objective of statistical inversion is to extract information on the
unknown quantities of interest based on all available knowledge
about the measurements, models between the parameters, and

information that is available prior to the measurement.
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The statistical approach is based on the following principles:

1.
2.

All variables are modelled as random variables.

The randomness describes our degree of (or lack of) information on

their realizations.

. The information concerning the values of the random variables is

coded in probability distributions.

. The solution of the inverse problem is the posterior probability

distribution of the quantities of interest (given the measurement).
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A classical regularization method typically produces a single estimate,
using often a more or less ad hoc removal of the ill-posedness of the

problem.

In the statistical framework, the solution is a probability distribution that
contains all information on the possible values of the variable of interest.
This distribution can be used to obtain different estimates and to
evaluate their reliability, e.g., single estimates and credibility intervals.
The statistical approach removes the ill-posedness by considering a
well-posed extension of the inverse problem in the space of probability
densities. When constructing the well-posed extension, the prior beliefs

are more explicitly stated than in traditional regularization.
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Subjective probability
Example: Tossing a coin.

Assume that the odds of getting heads or tails are equal, i.e.,

1
P(heads) = P(tails) = 5"

Such an assumption is generally accepted and can be verified empirically
(empirical probability). This example reflects the frequentist view, where
probability can be seen as the relative frequency of occurrence in a set of
repeated experiments.
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In connection to Bayesian approach, one sometimes talks about
subjective probabilities. The inference process commonly incorporates
subjective components that reflect the beliefs of, e.g., the person doing
the inference (e.g., in the form of prior beliefs about the behaviour of the

unknown).

Examples:
What is the probability of rain tomorrow?

What is the probability that Finland will win a gold medal in the next
Olympic games?

221



On random variables and probability
densities
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Probabilities and events (very informal)

Let €2 contain all possible events, and consider a subset &£ C (). For the
probability P(FE) of an event E, we require

0<P(E)<1.

Furthermore, it is assumed that

PQ)=1 and  P(0)=0.

Additivity: If AN B =0 for A, B C €, then

P(AU B) = P(A) + P(B).

Two events A and B are called independent, if

P(AN B) = P(A)P(B).
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The conditional probability of A on B is the probability that A happens
provided that B happens,

P(AN B)

P(A|B) = —5

If A and B are mutually independent,

P(A|B) = P(A), P(B|A)=P(B).
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Real valued random variables (still informal)

We denote random variables by capital letters and their realizations with
lower case letters. Let X : {2 — R be a real valued random variable and
denote its probability density by w(x) = mx(x) > 0.

The probability of the event x € B, B C R is obtained through
Integration

P{X(w) € B} = P(X"Y(B)) = /B r(x)dz.

In particular,

oo

P{X(w) € R} = P(Q) = / r(x)de = 1.

— OO
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The expectation is the center of mass of the probability density
E(X) = / xm(x)dr =: T.
R

The variance is the expectation of the squared deviation from the
expectation

var(X) = 02 = B{(X — 7)2} = / da.

The joint probability density m(x,y) = 7x v (x,y) of two random
variables X and Y is

P{X €AY € B} = // m(x,y)dzdy.
AxB

The random variables X and Y are independent if
m(z,y) = m(2)m(y).
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The covariance of X and Y is
cov(X,Y) =E{(X —Z)(Y —9)}.

Note that
cov(X,Y) =E{XY} - E{X}E{Y}.

The correlation coefficient of X and Y is

cov (X, Y)7 ox = \/var—(X), Oy = \/W’

OX0y
or, equivalently, with the help of normalized random variables,

e - X% - Y -3
cort(X,Y) =E{XV}, X=2"72 y=-"Y
035°¢ Oy

corr(X,Y) =

Random variables are uncorrelated if their covariance (or correlation
coefficient) vanishes,

cov(X,Y) = 0.
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If X and Y are independent, they are uncorrelated, since
B{(X — 2)(Y - §)} = B{X — 2}B{Y — 5} = 0.

On the other hand, uncorrelated random variables are not necessarily

independent.

Given two random variables X and Y with joint probability density
m(x,y), the marginal density of X when Y may take any value, is

w(@) = [ wle.)dy

Analogously, the marginal density of Y is

m(y) = /R’/T(w, y)dz.
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The conditional probability density of X given Y is the probability
density of X assuming that Y = y:

(T, y)
T(y)

m(z|y) = if w(y) # 0.

Note that by the symmetry of the roles of X and Y, we have
m(x,y) = w(x|y)n(y) = n(y|z)m(x),
which leads to an important identity

m(y | z)m(x)
T(y)

m(x|y) =

known as the Bayes formula.
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The conditional expectation or the conditional mean is the expectation
of X given that Y = y:

(X |y} = / en(z| y)de.

The expectation of X can be computed also via its conditional
expectation:

B{X} — / o (z)dz = / . ( / 7r(x,y)dy> iz
_ / " ( / (x| y)w(y)dy) da
= [ ([ o1tz wtopa

_ / B{X | y}(y)dy.
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Multivariate random variables

A multivariate random variable is a random variable

where each component X is a real scalar valued random variable.

The probability density of X is the joint probability density

wx(r) =7m(x) = mw(x1,...,x,) of its components.

The corresponding expectation is

z :/ rm(x)dr € R™,
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or, componentwise,

@-:/ r;m(x)de e R, 1<i<n.

The covariance matrix is defined as
cov(X) = / (z —z)(x — ) 'w(x)dx € R™™",
or, componentwise,
cov(X); = / (z; — i) (z; — 7)) 'n(x)de €R, 1<4i,5<n.

The covariance matrix is symmetric and positive semi-definite.
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The symmetry is implicit in the definition of the covariance matrix,

whereas the positive semi-definiteness follows by writing for v € R™ that
Teov(X )y = / W (2 — B)][(2 — ) To]r(x)dz

= /n(vT(x —z))*m(x)dz > 0.

Note that the above expression measures the variance of X in the
direction v.
The diagonal entries of the covariance matrix are the variances of the

individual components of X. Indeed, let us denote by z; € R"~! the

vector  with the ith component deleted, i.e.,

/I T
wi — [331, Ly « ooy Lj_1, 5137;_|_1, e ooy ZCn] .
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Then, we have

cov(X)y = /n(xi — ;) *m(z)dw

- /R(xz'—i’z-V (/Rnlﬂ(xi,a:;)dx;) dz;
= /R(flfz' — %)% () d;
— var(X;).

The marginal and conditional probabilities for multivariate random
variables are defined by the same formulas as for the univariate random

variables.
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Example: Random variables waiting for the train

Assume that every day, except on Sundays, a train for your destination
leaves every S minutes from the station. On Sundays, the interval
between trains is 25 minutes. You arrive at the station with no
information about the timetable of the trains (or of the day!!). What is
your expected waiting time?

Define a random variable, T = waiting time, whose distribution on
working days is

. 1 1, 0<t<S§,
T ~ n(t|working day) = gXS(t)a Xs(t) = 0. otherwi
, otherwise.

On Sundays, the distribution of T is
1

T ~ m(t|Sunday) = ﬁxgg(t).
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On a working day, the expected waiting time is

I S
EA{T | working day} = /t’zr(t | working day)dt = §/ tdt = 5
0

On Sundays, the expected waiting time is two times as long.

If you have no idea which day of the week it is, you can give equal
probability to each day. Thus,

6 1
m(working day) = =) m(Sunday) = =

To get the expected waiting time regardless of the day of the week,
marginalize over the days of the week:

E{T} = FE{T |workingday}r(workingday) 4+ E{T | Sunday }x7(Sunday)
85§ _4s
T T T
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Example: Poisson distribution

A weak light source emits photons that are counted with a CCD
(Charged Coupled Device). The counting process N (1),

N (t) = number of particles observed in [0,t] € N

is an integer-valued random variable.

Under some assumptions, it can be shown that IV is a Poisson process:

P{N(t) =n} = (At)ne_M A > 0.

n! ’

We now fix t = T" = the recording time, define a random variable
N = N(T), and let 8 = AT'. We write

N ~ Poisson(8).
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We want to calculate the expectation and variance of this Poisson
random variable. Since the discrete probability density is

m(n)=P{N =n}=—e ", 60>0,

and our random variable takes on discrete values, in the definition of the
expectation we have an infinite sum instead of an integral (a countable

number of probability masses), that is
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en
E{N} = ;O'mr(n) == ;nm
o0 o™ B o0 Hn—l—l
_e_ez(n—l)! - QZ n!
n=1 n=0
o 0"
= fe QZ%H = 0.
n=
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We calculate the variance of a Poisson random variable in a similar way,
writing first

var(N) = E{(N — 0)*} = E{N?} — 20 E{N} +6*
=0

= E{N*} - 6°

= Z n*m(n) — 6.
n=0

Substituting the expression of 7(n), we thus get
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that is,

n=0 77,'
i o0 9n—|—1 )
— e nz::O(n + 1) e 0
0 n o 9
-0 —0 2
— fe Zna—l—ﬁe ZOF—Q
n=0 n—
=0e "’ ((0+1)e’) — 0?

the mean and the variance coincide.
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Normal distributions

A random variable X € R is normally distributed, or Gaussian, i.e.,
X ~ N(CIJQ, 0'2),
if

1
P{X <t} = exp| —5 5@ - 2)61:1:.
X =t = W/ p( S
For X ~ N (zg,0?), it holds that

E{X} =20, var(X)=o"

As a generalization, X € R™ is Gaussian if its probability density is

r(z) = ( (%)nget . ) . (—%(:p —20) T (& x0)> ,

where g € R", and I' € R™*"™ is symmetric and positive definite.
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Gaussian random variables are widely used in statistics. They appear
naturally when macroscopic measurements are averages of individual

microscopic random effects.
Examples: pressure and temperature.
The Central Limit Theorem sheds light on this:

Central Limit Theorem: Assume that real valued random variables
X1, Xo, ... are independent and identically distributed, each with
expectation . and variance 0. Then the distribution of

1
Ly = ——(X1+ X ot X, -
0\/5( 1+ Xo+ .+ ni)

converges to the distribution of a standard normal random variable

lim P{Z, <z} = ©/2q¢.

1 X
— e
Nn— 00 \/ 27 /—oo
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Another interpretation of the Central Limit Theorem: If

1 mn
Y, = ﬁj;xj,

then for large n a good approximation for the probability distribution of

Y is
52

Y ~ N, ).
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Example: Poisson distribution (revisited)

One implication of the Central Limit Theorem is that the Poisson
distribution can be approximated with a Gaussian distribution if the

expectation @ is large.

Intuitive reasoning based on the CCD camera: Assume for simplicity
that the expectation 6 is a positive integer. The total photon count can
then be viewed as a sum of sub-counts on 6 € N smaller counter units of
equal size. These sub-counts can in turn be viewed as mutually
independent Poisson distributed random variables with expectation (and
variance) 1. Now, it follows from the Central Limit Theorem that as 6
increases, the sum of the sub-counts approaches a normally distributed

variable with mean and variance 6.
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et us test this hypothesis numerically. We plot the Poisson probability

distribution
o,
TTPoisson (n | ‘9) — _'6
n!

as a function of n € N, and compare it to the Gaussian approximation

1 1
7T(}aucssiam(aj ’ 07 ‘9) — \/ﬁ eXp (—2—9(33 — 9)2>

as a function of x € R, for increasing values of 6 > 0.
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Inverse problems and Bayes’ formula
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Classical setup for inverse problems:

y = flze),
where
e y € R™ is the measured quantity,
e r € R" is the quantity we seek to get information about,

e ¢ € R¥ contains the poorly known parameters and noise, and

o f:R"” xRF¥ — R™ is the model.
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In the statistical setup, all parameters are viewed as random variables,

and the classical model is replaced by
Y =f(X,F).

Notice that the probability distributions of the three random variables
X,Y and F depend on each other.

Nomenclature:
Y is called the measurement, and its realization y.,s the data.
X is the unobservable variable of primary interest and called the

unknown.
The other variables E that are neither observable nor of primary interest

are called parameters or noise.
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Prior density

Even before performing the measurement, we typically have some
knowledge about the variable X. This information is coded in a

probability density « +— 7. (x) called the prior density.

Likelihood function

The conditional probability density of Y in case we know the value of
the unknown, i.e., X = z, is called the likelihood function:

I P Y] R

Tpr(T)
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Posterior density

Given the measurement data Y = y,1,5, the conditional probability

density

Ly Yobs .
7T($ ’ yobs) - i(yybb) )7 if 7T(yobs> — / 77(377 yobs)dx 7é 07

is called the posterior density of X.

The posterior density expresses what we know about X after realizing

the observation Y = y,ps.
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Inverse problem in the Bayesian framework

Given the data Y = y.1s, find the conditional probability density
(x| Yobs) Of the variable X .
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Bayes theorem of inverse problems

Assume that the random variable X € R"™ has a known prior probability
density m,.(x) and the data consist of the observed value y,ns of an
observable random variable Y € R™ such that w(yobs) > 0. Then, the
posterior probability density of X, given the data y.ps, IS

Tpr (x)ﬂ-(yobs ’ $) .

Tpost (%) = (2 | Yobs) = T(Yobs )

In practice, the marginal density 7(yons) plays a role of a norming
constant and is often not important.
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Solving an inverse problem in the Bayesian framework

1. Based on all available prior information on the unknown X, find a
prior probability density 7, that reflects this information as well as
possible.

2. Find the likelihood function 7(y | ) that describes the interrelation

between the observation and the unknown.

3. Develop methods to explore the posterior probability density.
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Estimators
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Maximum a posteriori estimate (MAP)

TyMap = arg max 7(z | y)
T

Existence or uniqueness is not guaranteed.

Finding the MAP estimate requires solution of an optimization problem,
using, e.g, iterative gradient-based methods.

Conditional mean (CM) estimate is defined as
zom = E{z|yy = | an(z|y)de
Rn
provided that the integral converges.

Requires solving an integration problem. In high-dimensional spaces, this

may require special techniques (sampling).
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Maximum likelihood (ML) estimate

Ty = arg max w(y| z)
XI

Answers the question: Which value of the unknown is most likely to
produce the measured data?

The ML estimate is a non-Bayesian estimate, and in the case of ill-posed
inverse problems, often not useful. Loosely speaking, it corresponds to
solving a classical inverse problem without regularization.
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Conditional covariance is a ‘spread estimator’:

cov(z | ) = /n(x — wend) (@ — mon) (x| y)da € RPXT

Requires solving an integration problem.
Bayesian credibility set

Given p, 0 < p < 100, the credibility set D,, of p% is defined through
the conditions

/D m(x|y)dr = 1]5;0, (x| y)‘xeaDp = constant,

p

and 7(x|y) > w(z|y) for all x € D, and z ¢ D,,. The boundary of D,
is an equiprobability hypersurface enclosing p% of the mass of the
posterior distribution. (Notice that D, is not necessarily well defined.)
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For a single component, one can look at the symmetric interval of a
given credibility: The conditional marginal density of the kth component
X of X is obtained as

m(TE |y) = / (21, ..., Tn|y)dey - drg_1dTK41 - - - dTy,.
Rn—l

The end points a and b, a < b, of the credibility interval I}(p) C R with
a given p, 0 < p < 100, are determined from the conditions

a 00 1
/ m(zk |y)day = [) (x| y)dry = 5~ ;ﬁ

— OO

(Unfortunately, these conditions do not always define I (p) uniquely.)
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An Example: xyap and o) estimates

In this example, we compare the xyap and xoy estimates in a simple
one-dimensional case. Let X € R and assume that the posterior density

Tpost () of X is given by

Q x 1l —« r—1
7Tpost(aj):O__qu (O__O>_|' o1 gb( o1 >a

where 0 < o < 1, 0g, 01 > 0, and v is the standard Gaussian density,

1 —332/2

¢(r) = \/—2_7r€
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In this case, we have

rem = 1 — a,

and for small o¢ and o7 it is a good estimate that

0 if&/Uoz(l—&)/(fl,

TMAP ~
if a/og < (1—a)/o;.

We investigate two different choices of the parameters o, oy, o1, namely
a) a = 0.5, 09 = 0.08 and o1 = 0.04,
b) o = 001, oo — 0.001 and 01 — 0.1.

Note that in case b), @ = 0g/01, which means that a/og > (1 — «) /07,
and thus xyap =~ 0 should be the valid case. (You can easily verify this

fact numerically.)
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et us also consider the posterior variance
O O
2 2 2 2
o = / (x — xcom) Wpost(x)da: = / T Wpost(:zj)dx — TEM
— 0 — 0

which can be calculated analytically in our simple setting:
0? =aos + (1 —a)(of +1) — (1 —a).

In the following images, we have visualized the intervals of length 20,
i.e., of length two times the standard deviation, centered at xcyp for

both sets of parameters.

Notice that when the conditional mean gives a poor estimate, this is
reflected as a larger variance.

265



b)

MAP

3.5}

1.5

0.5

1.5

0.5

266



Construction of the likelihood function
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The likelihood function answers the question: If we knew the
unknown x, how would the measurements be distributed?

What makes the data deviate from the predicted value given by our
observation model?

Some common sources:
1. measurement noise in the data,

2. incompleteness of the observation model (e.g., discretization errors,
the reduced nature of the model as compared to the "reality").

Commonly used techniques in construction of the likelihood function
(and priors) include conditioning (inspect one variable at the time) and
marginalization (eliminate variables of secondary interest).
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Additive noise

Very often, the noise is modelled as additive and independent of X. This
means that the stochastic model is

Y=fX)+E.
Let us assume that the probability distribution of the noise is known:

P{E € B} = / Toowe(€)de, B ER™.
B

Because X and E are mutually independent, fixing X = = does not alter
the probability distribution of E. Hence, Y conditioned on X = x is
distributed as E shifted by the constant f(x):

ﬂ-(y | CC) — 7-‘-noise(y - f($))
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If the prior probability density of X is m,,, we thus obtain from the
Bayes formula that

(x| y) X Tpr () Tnoise (¥ — f()).

If the unknown X and the noise E are not mutually independent, we
need to know the conditional density of the noise

P{EeB|X =z} = / Thoise(€ | T)de.
B
Then, we may write

m(y|x) = /m m(y,e|x)de = /m (Y |z, €)Thoise (€ | ) de.
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If both X =2 and E = e are fixed, Y = f(x) + ¢, and hence

m(y |z, e) =6(y — f(x) —e).

Substituting 7(y | z, e) into the last formula of the preceding slide thus
yields
ﬂ-(y | x) — Wnoise(y o f(ilf) | ZE‘),

and once again from the Bayes formula we get that

7T($ ’ y) X Wpr(w)ﬂ'noise(y - f(ZL’) ’ ZB)
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Example: Additive independent noise

A simple low-dimensional example: a linear model
Y =AX + F,

where X € R? and Y, E € R? are random variables, and

1 -1
A= |1 =2
_2 1_

is deterministic. Assume that E has mutually independent normally
distributed components with zero mean and variance o2 = 0.09, i.e.,

1
7Tnoise(e) X €exXp <_ﬁ”6”2> .
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Our only prior information is that
P{|X;|>2}=0, j=12
which we write in the form of a prior density via

_ Xq(7)
Tpr(T) = ?16 ;

where x is the characteristic function of the square [—2,2] x [-2,2].
The posterior density is then

1
(e 1) x xo(@)exp (o Iy Asl?).

Suppose that the true value of X is o = [1,1]1. We simulate the data
through y = Axy + e, where € is drawn from m,0;e.

The following figure illustrates the posterior density with six different
realizations of E. Note that in this case the prior hardly plays any role.
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Construction of the likelihood function
(continued)
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General noise model

Assume that we have an observation model of the type Y = f(X, F),
where X € R" is the unknown, Y € R™ is the measurement and
E € R is the noise/parameter vector. Since fixing X and E determines

the value of Y, we may write

W(y ’ L, 6) — 5(y - f($, 6))

In consequence,

T(y|x) = /Rk m(y,e|x)de = [ 6(y — f(z,e))Toise(e] x)de.

RFE
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Change of variables

Consider two random variables X € R™ and Y € R" that are related via
the formula

Y = f(X),

where f is continuously differentiable and injective (these conditions can
be relaxed). Suppose we know the probability density of Y, namely 7y-.

Then, for a Borel set B ¢ R", it holds that

P{X eB} = P{Y € f(B)} = f(B)Wy(y)dy

_ /B ry (f(2))|det D (z)|dz

where D f(x) € R™*" is the differential or the Jacobian matrix of f. As
a consequence,

mx(x) = 7y (f(z))| det D f(z)].
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Example: multiplicative noise

Consider an amplifier that takes in a signal f(¢) > 0 and sends it out
multiplied by a constant factor o > 1. The ideal model for the output is

thus
g(t) = af(t), 0<t<T.

Suppose that the amplification factor is not a constant but fluctuates
slightly around a mean value oy > 0 as a function of time. In order to
write a likelihood model for the output, we first discretize the signal:

vi=f(t;), yi=g9(t;), O=ti<to<---<t,=T.
Let the amplification at t =t; be a;, i.e.,
yj:aj:c'j, 1<j<'n,

and introduce the stochastic extension:
Y;j:Aij, 1§]§n
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In vector notation, this reads

Y = AX,
with the dot denoting componentwise multiplication of the vectors
A, X € R"; we also use a similar notation for componentwise division.

Assume that A is independent of X and has the probability density
f4’v'ﬂno$e(a>-

To find the likelihood density of Y, conditioned on X = x such that
z; >0 forall j =1,...n, we write

'
Aj:—J, 1 <j3<n.
Lj

Thus, we obtain by the change of variables formula that

B 1 v.
r(y|x) = Tnoise (2 )
L1X2 - Tp X
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As an example, assume that the components of A € R™ are mutually
independent and log-normally distributed:

Wi = logAz- NN(U]Q,O'2), Wy :log()éo.

To find an explicit formula for the density of A, we note that if
w = log a, where the logarithm is applied componentwise, we have

1
dw = da for ay,...,a, > 0.
a10a9 - - - Qp

Thus, the probability density of A vanishes if any of the components of
a is zero or negative, and otherwise it holds that

1 1
Troieela) = exp (—ﬁnlog(a/aow?) .

ala/2...a/n
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By substituting this formula in

1 Y.
7T(y | w) = Tnoise (_> 3
L1X - Tp X
we find that
(o) 1 L ( y. > ’
m(y|x) x exp | —=——= ||log | — :
Y1Y2 - Yn 202 || Q0T
for y € R™ such that y; > 0 for all j =1,...,n, and zero for other

y € R™. (Recall that it was assumed to begin with that the components

of x are positive.)
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Incompletely known forward model

Consider having a noisy measurement with an incompletely known

forward model: The deterministic model with additive noise is
y=Aw)x +e, ye € R™, € R" and A(v) € R™*", where A(v)
depends on a parameter vector v € R,

The corresponding stochastic extension is
Y=AV)X + FE.

Assume that E, X and V are mutually independent. How to construct
the likelihood model 7(y| ), assuming that the noise is distributed
according to myeise and the parameter according to mparam !
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To begin with, fix X = x and V = v in order to get the conditional
density of Y:

W(y ’ €L, U) — 7Tnoise(y — A(’U)CIJ)

Subsequently, we marginalize with respect to the parameter V' which is
of secondary interest:

m(y|x) = /Rk W(y,’v|x)dv:/ (Y | T, v)Tparam (v)dv

sz

= / Tnoise (Y — A(V)T)Tparam (v)dv.
Rk:
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On sampling
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Before moving on to construction of priors, we touch the subject of how
to draw a sample of realizations from a given probability distribution.

Why is such consideration relevant?
e Visual inspection of priors, and

e estimation of integrals of the type

. / F(2)m(x)da

with the help of Markov chain Monte Carlo (MCMC) techniques.
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In what follows, we assume to have random number generators for two

elementary distributions at our disposal:

e Standard normal distribution

() = j% exp (—%aﬁ) ;

in Matlab the command randn.

e Uniform distribution over the interval [0, 1],

T(x) = X1[0,1] (7);

in Matlab the command rand.
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Sampling from Gaussian distributions

Suppose that we want to create a sample of realizations for a
multivariate Gaussian random variable X ~ A (x(,T"), with the
probability density

r(z) = ( (%)nzet . ) " (—%(a: )T — x0)> |

Since I'"! is (by assumption) symmetric and positive definite, it has a

Cholesky decomposition
I'' =R'R,

where R is an upper triangular matrix. Notice that the probability
density of X can alternatively be written as

n(x) = ((%)nldetm)m exp (—%nmx - 900)“2> .
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Encouraged by this observation, we define a new random variable
W=R(X -2y <= X=R'W+ 2,
which, in particular, means that
mw (w) = mx (R 1w + zo)|det(R™1)| = mx (R~ w + x0)|det(R)| .
Using the identity
det(I') ™ = det(I'™!) = det(R") det(R) = det(R)?,

leads finally to the formula

W) = ez e (3 ul?).

In consequence, W is Gaussian white noise, i.e.,

W ~ N(0, ).
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This transformation is called the whitening of X and the Cholesky factor
R of the inverse of the covariance the whitening matrix.

If the whitening matrix is known, a random draw from a general

Gaussian density can be generated as follows:
1. Draw w € R"” from the Gaussian white noise density.

2. Compute the sought for realization x € R™ by solving the linear
system

w = R(x — xp),

which is almost trivial since R is triangular.
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Random draws from non-Gaussian densities using
direct sampling

Let us next consider how to draw a random sample directly from the

actual distribution in one dimension.

Let X be a real valued random variable with probability density 7 (x)
such that 7(x) = 0 only at isolated points (this assumption can be

relaxed). Define the cumulative distribution function via
d(2) :/ m(x)dx.

Due to the assumptions on 7, it follows from the fundamental theorem
of calculus that @ is strictly increasing. In particular, ® : R — (0,1) has
an inverse @1 : (0,1) — R.
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Define a new random variable,
T =o(X).
Lemma. T ~ Uniform(|0, 1}).
Proof. Observe first that,
P{T <a} =P{®(X)<a}=P{X <d '(a)}, O<a<l.

On the other hand, due to the definition of a probability density,

& 1(a) ® 1(a)
P{X < 3~(a)} — / r(x)dz = / &' (z)da

= ®(® '(a)) - lim ®(z)=a—0=a,

r——0

which just means that T is distributed uniformly over the interval [0, 1].
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An algorithm for drawing from the density
1. Draw t ~ Uniform(|0, 1}),
2. Calculate z = &~ 1(1).

This technique is sometimes referred to as the Golden Rule.
A
14
D(x)

m(X)
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Example: Gaussian distribution with a bound constraint

Consider a one-dimensional normal distribution with a bound constraint,

() o mo() exp (-;x) ,

where

1 if > c,
Te(T) = _
0 if z <ec
for some ¢ € R. Our aim is to generate a sample from this distribution.

In this case, the cumulative distribution function is
1

O(2) = C’/ e~ 2y, C = (/ e_x2/2dac> :

where C' > 0 is the normalizing constant of the corresponding probability

density.
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The function ® has to be calculated numerically. Fortunately, there are
routines available to do the needed integration: In Matlab, the built-in
error function, erf, is defined as

erf(t / —s" ds.
\/_

We observe that

z c ) z/\V?2 c/\V?2 )
:C’</ —/)e_x/Qdaj:\@C / —/ e ° ds
0 0 0 0

— \/gC (erf(z/\@) — erf(C/\fz)) '

Since erf(t) — 1 as t — oo, the same logic also shows that

C = <\/§ (1- erf(c/\@))>
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Altogether we have

erf(z/v/2) — erf(c/v/2)
1 — erf(c/+/2) .

P(z) =

How about the inverse then?

Setting
P(z)=t <= z2=0"1(t),

we find through a straightforward algebraic manipulation that
erf(z/V/2) = t(1— erf(c/V'2)) + erf(c/V'2),
or in other words (see erfinv in Matlab)

() = V2 erf ! (t(l — erf(c/V2)) + erf(c/ﬂ)) .
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The generation of random draws in Matlab is then very simple:

a = erf(c/sqrt(2));
t = rand;
z = sqrt(2)*erfinv(t*(1-a)+a);

Note: If the bound c is large, the above program does not work because
the error function saturates quickly to unity. To be more precise, e.g. for
c=10, Matlab interprets that a in the above code is exactly one, which
means that the value of z is Inf independently of the random draw t.
An alternative implementation in this case is to perform the numerical
integration only at the region we are interested in. This approach is
discussed at the exercises.
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Prior models
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The prior density should reflect our beliefs on the unknown variable of
interest before taking the measurements into account.

Often, the prior knowledge is qualitative in nature, and transferring the
information into quantitative form expressed through a prior density can
be challenging.

A good prior should have the following property: Denote by x a possible
realization of a random variable X ~ 7. (x). If E is a collection of
expected (i.e., something you would expect to see) vectors  and U is a
collection of unexpected ones, then it should hold that

Tor (1) > e () whenz € FE, 2’ € U,

I.e., the prior assigns a clearly higher probability to the realization that

we expect to see.
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Example: Impulse prior densities

Consider, e.g., an imaging problem where the unknown is the discretized

distribution of a physical parameter, i.e., a pixel image.

Assume that our prior information is that the image contains small and
well localized objects in almost constant background. In such a case, one
may try impulse prior densities, which have low average amplitude but
allow outliers. (The ‘tail’ of an impulse prior density is long, although

the expected value is small.)

Examples of impulse prior densities: Let € R™ represent a pixel image,
where the component z; is the intensity of the jth pixel. (In all of the
following examples, X, and X}, are assumed to be independent for

j# k)
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The ¢ prior:

8%

(@) = (§>nexp(—ozH:UH1), a> 0.

where the ¢{-norm is defined as
mn
EFE I EE
j=1

More enhanced impulse noise effect can be obtained by taking even
smaller power of the components of x:

n
moe() ocexp | —aYlslP |, 0<p<l, a0
J=1
Such priors are studied in the seventh exercise session.
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Another choice is the Cauchy density that is defined via

aN" — 1

J:l J

The entropy of an image is defined as
E(x) = —Zajj logﬁ,
j=1 o

where it is assumed that z; >0, 7 =1,...n, and g > 0 is a given
constant. The entropy density is then of the form

m(z) x exp(a€(x)), a > 0.
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Log-normal density: The logarithm of a single pixel £ € R is normally

distributed, i.e.,
w = log , w ~ N (wy,0?).

The explicit density of z is then

1 1
w(x) = exp (——(logx — w0)2> : x > 0.

xV 2mo? 202

Do these priors represent our beliefs? How do these priors looks like?
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To underline the interpretation as a pixel image, we add a positivity
constraint to the above introduced priors, that is, we make the
replacement

Tpr () = Oy (2) e (2),

where 7, () is one if all components of = are positive, and zero
otherwise. Here, C' is a normalizing constant: If 7, (z) is a probability
density, the same does not typically apply to 7 ()7, () without
appropriate scaling.

For visual inspection we make random draws of pixel images from the
constrained densities. As all components are independent, drawing can

be done componentwise.

To make the draws from one-dimensional densities, we calculate the
cumulative distribution of the prior density and employ the Golden Rule,
as presented at the previous lecture.
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Example: Drawing from /¢ prior

The one-dimensional cumulative distribution of the positively
constrained /1 prior is

t
O(t) = a/ e “ds=1—e .
0

The inverse cumulative distribution is thus

d1(t) = —é log(1 — 1).

For each pixel x;, we draw ¢; from the uniform distribution
Uniform([0, 1]) and calculate x; = —1/alog(1 —t;).
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The Matlab code for doing this is very simple:

A=rand (100,100) ;

alfa=1;
ALlinv=-1/alfa*xlog(1-A);
figure

imagesc(AL1linv)

colormap gray

axis square
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Two random draws of pixel images from a /;-prior.

308



Example: Drawing from Cauchy prior

The one-dimensional cumulative distribution of the positively
constrained Cauchy prior is

200 1 1 2
O(t) = _a/ 5 ds = — arctan(at),
™ Jo 1+a%s T

meaning that the inverse cumulative distribution is

1 ¢
® '(t) = ~ tan %
o

As in the case of the ¢;-prior, we draw t; from the uniform distribution
and then calculate z; = 1/atan(nt/2).
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Two random draws of pixel images from a Cauchy prior.

310



How do these priors compare to white noise?

Let us consider a Gaussian prior with a positivity constraint, i.e.,

||a:||2) a0

Recall that at the previous lecture we implemented drawing from a
standard Gaussian distribution with a bound c. In particular, we were

1

onlz) x 4 &) 05 51z

able to calculate the one-dimensional cumulative distribution function
O~ (t) = v2erf! (t(l — erf(c/V2)) + erf(c/ﬂ)) .

A similar derivation for ¢ = 0 and the variance a? instead of 1 yields in

the current case that

dL(t) = V2aerf 1 (2).
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L, prior

Cauchy prior White noise prior
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Discontinuities

Prior information: The unknown is a function of, say, time. It is known
to be relatively stable for long periods of time, but contains now and
then discontinuities. We may also have information on the size of the

jumps or the rate of occurrence of the discontinuities.

A more concrete example: Unknown is a function f : [0,1] — R. We
know that f(0) = 0 and that the function may have large jumps at a few

locations.

After discretizing f, impulse priors can be used to construct a prior on

the finite difference approximation of the derivative of f.
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Discretization of the interval [0, 1]: Choose grid points t; = j/N,
7 =0,...,N, and set Tj = f(tj).
We write a Cauchy-type prior density

N

Tpr(@) = (%)N H 1+ 042(%'1_ Tj-1)°

g=1

that controls the jumps between the adjacent components of x € RV+1,
In particular, the components of X are not independent. (In addition to

this prior, we know that Xy = ¢ = 0.)

To make draws from the above density, we define new variables
ijZBj—ZEj_l, 1SJ§N,

which are the changes in the function of interest between adjacent grid

points.
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Notice that Z = [z1,...,2n5]|" € RY satisfies
x = A€,

where A € RY*N is a lower triangular matrix such that A, = 1 for
j > k. Hence, it follows, e.g., from the change of variables rule for

probability densities that

N

Wpr(f) — (%)N H 1 ‘|‘1)é2§]2-.

J=1

In particular, due to the product form of 7. (£), the components of =
are mutually independent, and can thus be drawn from a

one-dimensional Cauchy density.

Subsequently, a random draw from the distribution of X can be
constructed by recalling that 2y = 0 and using the relation £ = A¢.
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Sample-based densities

Assume that we have a large sample of realizations of a random variable
X € R™:
S={z' 2% ... 2"}

One way to construct a prior density for X is to approximate m(x) based

on S.

Estimates of the mean and the covariance:

1 N
E{X} ~ N E CIZJ — j,
=1

cov(X) = E{XXT} — B{X}E{X}T ~ % S 2 (27)T — 22T = T

(Notice that I' is not the unbiased sample covariance estimator, but let
us anyway follow the notation of the text book.)
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The eigenvalue decomposition of T' is
I=UDU",

where U € R™*" is orthogonal and has the eigenvectors of I" as its
columns, and D € R"*" is diagonal with the eigenvalues

dy > ...>d, >0 as its diagonal entries. (Note that I is clearly
symmetric and positive semi-definite, and thus it has a full set of
eigenvectors with non-negative eigenvalues.)

The vectors 7, j = 1,..., N, are typically ‘somewhat similar’ and the
matrix I' can consequently be singular or almost singular: The
eigenvalues often satisfy d; ~ 0 for j > r, where 1 < r < n is some
cut-off index. In other words, the difference X — F{X} does not seem
to vary much in the direction of the eigenvectors u, 1, ..., uy,.
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Assume this is the case. Then, one can postulate that the values of the
random variable X — F(X) lie ‘with a high probability’ in the subspace
spanned by the first r eigenvectors of I'. One way of trying to state this
information quantitatively, is to introduce a subspace prior

m(x) o< exp (—all (1 - P)(@ — 2)[?)

where P is the orthogonal projector R" — span{uq,...,u,}. The
parameter a > 0 controls how much X — Z is allowed to vary from the
subspace span{ui,...,u,.}. (Take note that such a subspace prior is not
a probability density in the traditional sense.)
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If T is not almost singular, the inverse I'"! can be computed stably. In
this case, the most straightforward way of approximating the (prior)
probability density of X is to introduce the Gaussian approximation:

Depending on the higher order statistics of X, this may or may not

provide a good approximation for the distribution of X.
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Posterior density and a simple linear model

Consider a linear system of equations with noisy right hand side,
y = Az + e, reR" yecR™ AecR™™,
The corresponding stochastic extension reads
Y =AX + F,

where X, Y and E are random variables.

A very common assumption: X and E are independent and Gaussian,
X ~N(0,74°T),  E~N(0,0%]),

where we have assumed that both X and F have zero mean. (If this
was not the case, the means could be subtracted from the respective

random variables.)
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The covariance of the noise indicates that the components of Y are
contaminated by independent and identically distributed Gaussian
random variables of variance 2. On the other hand, the prior
distribution of X is assumed to have a bit more structure: I' need not be
diagonal and the parameter 42 is introduced for controlling the
‘magnitude’ of the (prior) covariance.

In other words, the prior density is of the form

1
Tpr(T) X exp (—WxTF_lx> :

and assuming that the noise level o2 is known, the likelihood function
reads as

1
] 2) ocexp (5ol Ael?).
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It follows from the Bayes formula that the posterior density is

m(@|y) o< mpe(x)m(y | 2)

L 2>
xexp|—=—=x I'" x——y Ax
(50 v - Ac|
= exp(=V(z|y)),
where |
Vizly) = ﬁfETF :13+—||y Az|?.
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If ' is symmetric and positive definite, so is I'"!. Hence, we can

introduce a Cholesky factorization:
r-'=R'R.
With this notation,
' I 'z =2 R"Rx = |Rx|?,

and we define

0.2

T(x) =20°V(x|y) = lly — Azl + 3R], 5= T3

The functional T is sometimes referred to as the Tikhonov functional.
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Recall that the maximum a posteriori (MAP) estimator maximizes the

posterior probability density of the unknowns:

TMAP = arg max 7(z |y).

In our setting,
ryvap = argmin V(x |y) because V(x|y) = —logm(x|y).
With the help of the Tikhonov functional, this reads

Tvap = argmin T'(z) = argmin (|ly — Az|)* + §||Rz|?) .

Recall that the Tikhonov regularized solution of y = Ax — with the
penalty term ||Rx|| — is the minimizer of T'(x). In consequence, the
Tikhonov regularized solution and xprap coincide if the regularization

parameter is chosen to be § = 0% /42,
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Example: Laplace transform (revisited)

Recall the problem of finding a function f from noisy samples of its
Laplace transform. This problem was discussed at the ninth lecture and

solved using various classical regularization techniques.

We take another look at the problem, and interpret its Tikhonov
regularized solution from the statistical viewpoint.
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Laplace transform

Let f:[0,00) — R be some unknown function and assume that we have

access to noisy samples of its Laplace transform

Lf(s) = /OOOG_Stf(t)dt, s >0,

at some measurement points s;, j = 1,...,m. The task is to
approximate f using the noisy values {Lf(s;)}7L; as data.

st is typically very small, and hence

Observe that for large t the kernel e~
the ‘tail’ of f does not affect the Laplace transform as much as its
values close to the origin. In consequence, reconstructing f is an

ill-posed inverse problem.
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Discretization

In order to come up with a computational model, we approximate the
integral of the Laplace transform as

T n
,Cf(Sj) ~ /O e_sjtf(t) dt ~ Zwke_Sjtkf(tk)a j — 17 sy T
k=1

where t1,...,t, € [0,T] are the nodes and w = (wy,...,w,)" € R" the
corresponding weights of the chosen quadrature rule. Notice that it is

implicitly assumed that e~ f(t) is 'small’ for all ¢ that are larger than
the threshold 7" > 0.

For example, if we decided to use the trapezoid rule on an equidistant
mesh in the interval [0, T], we would choose h =T /(n — 1) and

w = (h/2,h,h,...,h,h,h/2)Y  and  t, = (k—1)h
fork=1,...,n.
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The above quadrature rule can be written in the matrix form

y = Az,
where € R™ and y € R™ are given by

z = (f(t1),.... fta)"
Yy = (Ef(Sl),...,,Cf(Sm))T,
and the elements of the matrix A € R™*"™ are defined as

—Sjtk

(A)jk:wke , jzl,...,m, kzl,...
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In the following numerical examples, we choose m = 91 sampling points

on a logarithmic grid:

U —1)

logs; = —log10 + 2
m_

log 10, 7=1,...,m,

where log denotes the natural logarithm. Now, the points {log s; }
form a uniform grid in the interval [—1log(10),log(10)], and thus

{s;}7L; lie in the interval [0.1,10], with half of the points between 0.1
and 1. This reflects our knowledge that the information in the Laplace

transform is — very loosely speaking — concentrated close to the origin.

We set n = 101 and choose the nodes {¢x}?_; and the weights w € R"
according to the Gauss—Legendre quadrature rule in the interval [0, 5].
(One could use something less sophisticated, such as trapezoid rule in
this same interval, as well.)
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Simulation of data

We choose
3 — 4t? + 4¢, 0<t<2,
0, t> 2.

ft) =

In this simple case, the Laplace transform can be calculated explicitly
with the help of partial integration:

Lf(s) = ;12—;13(2+6_28)+8%(1—6_28), s > 0.
Consequently, we just compute the value of Lf(s) at the chosen
sampling points {s;}7.; using this formula, add realizations of a
normally distributed random variable with zero mean and standard
deviation 1073 to each sample, plug the resulting data into the vector v,

and we are ready to go.
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Laplace transform and the noisy measurements
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Tikhonov regularized solution

We consider the above introduced discretized “inverse Laplace transform
problem”

Ax = y.

Recall that the Tikhonov regularized solution z5 € R™ is the unique
minimizer of the Tikhonov functional

|Az —y|I* +dllz]®,  d>0.
It is given explicitly by the formula
s = (AYA+ 01"t A Y.

According to the Morozov discrepancy principle a feasible choice for the

regularization parameter is such § = dyor that the corresponding
solution satisfies

~e=10""-vVm ~ 9.5-107°.

Hy o A:’U5Mor
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Statistical model

Let us introduce the stochastic extension
Y =AX + F,

where X €¢ R™, Y € R™ and £ € R™ are random variables. We assume
that X and FE are independent and Gaussian,

X ~ N(0,4%I),  E~N(0,0%I).

Recall from the previous lecture that with these assumptions the
maximum a posteriori estimate

Tyvap = arg max w(x | y)

IS given as

|
\V)

=9

TMAP :argmin<Hy—A:EH2—|—5||x||2) : )
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Suppose that we know the noise level, i.e., o = 1073.

Then, we still need to choose the standard deviation (or the variance) of
the prior density based on our a priori information on the unknown
function f. If we believe that the order of magnitude of the values of f
is, say, one, a suitable choice for v could be, e.g., v =1 or v = 0.5.
(Note that our prior mean is set to zero.)

With v = 0.5 we get § = Z; =4-107°,

How does the corresponding Tikhonov regularized solution look like?
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Tikhonov regularized solution with § =4 -107°
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Traditional Tikhonov with § = dy;, ~ 3.6 - 107° (solid),
§ = 10° - dyior (slashed) and 6 = 1077 - dyo, (dotted)
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The previous test cases presented at the ninth lecture correspond to the
following choices of the prior standard deviation:

0 = 5Mor — ¥ = 0.167,
5§ =10 - 6yer  — v = 0.00527,
5 =103 0y = 4 = 5.27.
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n-variate Gaussian densities
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Definition. Let

I I
r_ |t 12| pnxn

' e

be a positive definite and symmetric matrix, with I';; € R¥*% k< n,
[y € R=F)X(n=k) and To = | S R(—k)*XEk \We define the Schur
complement f’jj of I'j;, 5 = 1,2, by the formulas

Ty =T — 1055 Do, Iy =T9y — T T T

Observe that the definition of I' implies that I';;, j = 1,2, are
symmetric, positive definite and, in particular, invertible. In
consequence, the Schur complements are well defined and symmetric.
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Lemma. Let I' be a matrix that satisfies the assumptions of the
previous definition. Then, the Schur complements I';;, j = 1,2, are

invertible matrices and, furthermore,

=
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Proof: We prove first that the Schur complements are invertible:
Consider the determinant of T,

I'vi T'io
I = # 0.
I'or I'oo

By subtracting the first row multiplied by I'5;I'7;' from the second one,
we find that
I'yy I'y9

I = =Tl
0 T'oa —I'9I'j7 T2

implying that |T'11| # 0. In the same way, we can also show that
[Tao| # 0.
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The proof of the second assertion of the lemma follows from the
Gaussian elimination: Consider the linear system

I''i T2 |1 Y1

I'o; T'ag| |22 Y2

By solving for x5 in the second equation, we get
zo =Ly (y2 — Ta121).
Substituting this formula into the first equation, then gives us
(T11 — D1al55 To1)xy = y1 — T12l55 o,

or equivalently

~

—1 S—1 —1
Il = F22 Y1 — P22 F12I122 Y2,
which verifies the first row of claimed representation of I'"!. The second
row of the representation follows by reversing the roles of x1 and zs.
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Remark: Since T' is a symmetric matrix, so is I'~!. In consequence, we
have the identity

I~11_11F21F1_11 — (f2_21F12F2_21)T — F2_21F21f2_21-
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Theorem. Let X € R" and Y € R™ be two Gaussian random variables
whose joint probability density m: R" x R™ — R is of the form

- T r 4 —1 -

1 |z — 2o I'vi T'yo T — Zo
m(x,y) X exp ~5

Y — Yo I'o; T'ao Y — Yo

Then, the probability density of X conditioned on'Y =y, i.e.,
w(z|y): R — Ry, is of the form

() xexp (~ (0~ )T e - 0)),

where

T = xo + 12l (¥ — %0)-
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Proof: For simplicity, let us assume that o = 0 and yy = 0.

Due the representation of the joint covariance matrix I' ! provided by
the previous Lemma and the remark that followed, we may write

1 ~ ~ _ ~
m(x,y) o exp (_5 (a:TF221;1: — 20 Ty T1aToy y + yTPﬂly)>
1 _ ~ _
= exp (_5 ((x — I112I12213/)TF221(5‘U — F12I122ly) + C)) ;

where ¢ = yT (I — T35 To1155 712155 )y. Hence, it follows that

1 _ ~ _
m(x|y) x m(x,y) x exp (—5(56 — F12F221y)TF 21(56 — F12F221y)> :

where the proportionality constants depend on y but not on z. This

proves the claim.
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Theorem. Let X and Y be Gaussian random variables with a joint

probability density as in the previous theorem. Then, the marginal
density of X is

() = / (a,y)dy ox exp (—%(a: = o) T — x0)> |

Proof: The proof is slightly more complicated than the previous one. It
can be found in the textbook by Kaipio and Somersalo.
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Linear inverse problem

Assume that we have a linear model with additive noise,
Y =AX + F,

where A € R™*"™ is a known matrix, and X € R" and Y, EF € R™ are
random variables. Assume furthermore that X and E are mutually
independent Gaussian variables with probability densities

onle) ox xp (0 — ) Ty o = a0) ).

and

1
Thoise () X €Xp (—5(6 —eo)' Tk (e — eo)> :
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With this information, we get from the Bayes formula that the posterior
distribution of X conditioned on Y =y is

m(x | y) o< Tpe(2) (Y | ) = Tpr (%) Tnoise (y — Az)
1 1

ocexp (50— 20) Ty o = ) = 50— Ao = o) Tikuly — Av - co))

The explicit form of this posterior distribution, i.e., the form that shows
the posterior mean and covariance explicitly, can be calculated in a
straightforward but tedious manner by ‘completing the squares’ with
respect to . However, we may also use the first of the two theorems
presented on the previous few slides.
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Since X and E are Gaussian, so is Y, and we have

X o
E = : Yo = Axo + €
Y Yo

Furthermore, using the fact that X and E' are independent, we deduce
that

E{(X —z0)(X —x0)"} =Ty,

BAY = 0)(¥ —30)"} = B { (AKX —0) + (B~ €0)) (AQX —0) + (B~ o))"}
— AFPTAT + Fnoise;

B{(X = 20)(Y = y0)} = E{(X — 20) (A(X — 20) + (B e0))" }
=T, A"
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Hence, we get

- - ( - r = T - -
X X — Lo X — Lo Fpr FprAT

COV = F < > = :
Y Y — Yo Y — Yo Arpr ArprAT + I‘noise

- T \ /

The joint probability density of X and Y is thus of the form

— - T — - —1 rF -

7T(£B, y) X exp | — 5 T
Y —1Yo Arpr ArprA + Fnoise Y—1Yo

Using the first of the above two theorems, we can thus write the
posterior density of X conditioned on Y = y.
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Theorem. Assume that X € R" and E € R" are mutually independent
Gaussian random variables,

X ~ N(x()a Fpr)a b~ N(GO, Fnoise)

and I'p,, € R™™™ and I'pise € R™*™ are positive definite. Assume
further that we have a linear model Y = AX + E for a noisy
measurement Y, where A € R™*"™ s a known matrix. Then, the
posterior probability density of X given the measurement Y =y is

m(x|y) o< exp (—%(CE — :E)TI’;OlSt(:U — :E)) :
where
T =z + [pr A" (Ape AT 4 Thoise) ' (y — Azg — €p),
and

I‘post — I‘pr T PprAT(APprAT + Pnoise)_lAFpr-
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Remark: It holds that
I“pr — I“post — Fpr14T (ArprAT + Fnoise)_lfélr‘pra

which is a positive semi-definite matrix. Loosely speaking, this means
that the prior density is wider than the posterior, i.e., the measurement
decreases the uncertainty in the whereabouts of X.

Remark: As already mentioned, the explicit forms of the mean and the
covariance of the Gaussian posterior density for this linear model can
also be derived directly. This way we get alternative representations for
the posterior covariance matrix

Tpost = (F;rl + AT A

noise

and the posterior mean

T = (F;rl + AT A)THATT L (y —eg) + I‘;rlxo).

noise noise
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Gaussian white noise prior and Tikhonov regularization

Consider the simple Gaussian white noise prior case, X ~ N(0,v%1),
and assume also that the noise is white noise, i.e., E ~ (0,0%I). In this
particular case the mean of the posterior distribution given by the above

theorem turns into
T =AY (VAAY 4037y = AT (AAY +61) 1y,
where § = 02 /2.

It can be shown (the seventh exercise session) that this form is
equivalent to the Tikhonov regularized solution

rs = (ATA+ 611 Ay,

which is not very surprising, as we have already deduced at the previous
lecture that zyap = x5 for § = 02/4? and, on the other hand,
roMm = Tvmap for a Gaussian posterior distribution.
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Improper Gaussian priors
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Motivation: Smoothness priors

Recall from the thirteenth lecture that finding the maximum a posterior
(MAP) — or conditional mean (CM) — estimate for the linear inverse

problem
Y =AX + F, Y. EeR"™, X e€R",

where X and FE are independent and Gaussian with zero mean,
X ~N(0,T), E~N(0,d%]),
is equivalent to minimizing the Tikhonov functional
T(z) = |ly — Az|* + o*|| Rz,

where R satisfies ' = RTR. (The matrix R can be, e.g., the Cholesky

factor of the positive definite and symmetric matrix I'"1.)
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Let us then try to work our way in the opposite direction: Consider the
corresponding classical linear inverse problem

Ax = v,

and let us solve it using Tikhonov regularization under the prior
knowledge that x € R™ represents point values of a smooth function.

We try to incorporate this extra information in the solution process by
using a ‘smoothness penalty term’ for the Tikhonov functional:

T(z) = |ly — Az|* + 8| Lz,

where L € R¥*X" is a discrete approximation of some suitable differential

operator.
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If you now compare the two Tikhonov functionals on the previous two
slides, it seems natural that the Gaussian stochastic extension
corresponding to the smoothness penalty approach would be

Y = AX + E,
with
X ~N(O,(LTL)™Y,  E~N(0,0°0),
where 02 = 6.

Unfortunately, there is a slight flaw in this logic: In order for the inverse
(LTL)~! to exist — and to be positive definite — the matrix L € RF*"
needs to be injective, which is not always the case. (As an example,
quite often Lx = 0 if all elements of x are the same.)
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Due to this observation, we will next consider improper densities of the

form:
Tpr(T) o< exp (—%HL(w — 330)“2) = exp (—%(m —x9) LY L(x — 560)) :

where L € R¥*™ is a given, possible non-injective matrix.

We will tackle the problem of interpreting such densities as Gaussian

priors in three different ways:

1. by introducing a proper density that is ‘close’ to the considered
improper density,

2. by noting that the posterior density may be proper even if the prior

Is improper, and

3. by using conditioning to update improper priors so that they become

proper.
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Approximate proper densities

Recall from the first part of the course that any L € R¥*™ has a singular
value decomposition L = UAV'T, where U € R¥**¥ and V € R™*"™ are
orthogonal, and the diagonal matrix A € R**" contains the

non-negative singular values
A > > .2 >0 =...= ) =0, [ :=min(k,n).
Moreover, recall that the columns {vy,...,v,} of V satisfy
Ker(L) = span{vpt1,...,0n},

and let us define Q = [v,41,...,v,] € R ("=P) In particular, it is easy

to see that QQ1 € R™*™ is the orthogonal projection onto Ker(L).
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We then define an auxiliary covariance matrix I', € R™*"™ via
r, = L'(LN" +a*QQ",

where LT € R™** is the pseudoinverse of L and a > 0 is an arbitrary
(large) scalar.

Lemma. The covariance matrix I, defined above is positive definite.
Moreover, its inverse can be written explicitly as

1
r;' =L'L+=Q0Q".
a

Let x € R" be arbitrary and write it in the orthonormal basis

{v1,...,0,}, e,

n
T = g V5, a; € R,
j=1
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Then,

I'yx = Z fvj—|—a2 Z V5,

J=p+1
and thus
p
o' 'T,x = Z——I—a2 Z a > 0
Jj=1 =p+1

if £ #0, i.e., I', is positive definite.

Moreover,

1 - -
(L'L + EQQT)Fax = Zajvj + Z v = T,

j=1 Jj=p+1

which proves that I',t = (L1TL + = LQQT), as  was chosen arbitrarily.
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Instead of choosing the improper prior

Tpr () 0 exp (—%(w — @) L' L(z - xo)) ,

one may consider resorting to the slightly modified version

Fonle) ox xp (0 = a0) T o = 20) ).

which defines a proper Gaussian density because I', is positive definite

for any a > 0.
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Let us next consider in which way these two densities are different; for

simplicity assume that o = 0.

Let P : R™ — Ker(L)! be an orthogonal projection, which means, in
particular, that I — P is the orthogonal projection onto Ker(L), i.e.,
I —P =QQ". Trivial calculations show that

Tor () = mpr(Px), x € R,

and

Fonle) o (P exp (17 = PJal?)

In consequence, T, () is constant as a function of the component

(I — P)x of x, which makes it an improper prior. Moreover, the
functional dependence of m,,(z) and 7. () on Px is the same, but
Tor(2) has also a ‘density-like’ dependence on (I — P)x. To sum up, the
larger a > 0 is, the ‘closer’ these two densities are to each other.
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Proper posteriors corresponding to improper priors

Recall the following theorem from the fourteenth lecture:

Theorem. Assume that X € R™ and E € R™ are mutually independent
Gaussian random variables, X ~ N (xo,T};), E ~ N(eg, noise), and
that I'py € R™*™ and I'hoise € R™*"™ are positive definite. Assume
further that we have a linear model Y = AX + E for a noisy
measurement Y, where A € R™*"™ |s a known matrix. Then, the
posterior probability density of X given the measurement Y =y is

(el xexp (~5(0 - 2) Tk (e - 0)),

where
_ T T —1
r = X —+ FprA (ArprA + Fnoise) (y T AZBO - 60)7

and
I‘post — I‘pr T PprAT(APprAT + Pnoise)_lAFpr-
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When dealing with improper prior densities of the form

e () o exp (—%(:p — w) L L — xo)) |

this theorem is unfortunately useless in the construction of the posterior,
because the natural candidate for the prior covariance, i.e., (LTL)™
does not typically exist.

However, recall that we also introduced alternative formulas for the
posterior mean and covariance, namely

Tpost = (I, LyAtrt Ayt

noise

and

=5+ AT, A) (AT, (y —eo) + Tl wo).

noise noise

These formulas look more promising as they involve only I'_*, not I'j,.

pr’
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For simplicity let us only consider the zero mean case:

Theorem. Consider the linear observation model Y = AX + F,

A e R™"™ where X € R" and E € R™ are mutually independent
random variables, of which E is proper Gaussian, E ~ N (0, ' oise). Let
L € R**™ be a matrix such that Ker(L) N Ker(A) = {0}. Then the

function

1

o ey | ) o exp (=3 (1Ll + (0 = 40Tkl — 40) )

defines a Gaussian density over R™, with the corresponding covariance
and mean given by the formulas

PPOS'C T (LTL + ATFnollseA) T = pOStATansey?

respectively.
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Proof: Let us denote G LTL + ATTTL A e R*™X™ and let € R™

noise

be arbitrary. Because I'_ .. is positive definite, we have

noise

v Gr = ||Lz||* + (Ax) T L. (Az) > 0,

noise

where the equality holds only if z € Ker(L) N Ker(A) = {0}. |

consequence, G is positive definite, meaning that T'o5 = G~ is
well-defined and also positive definite.

By completing the square with respect to x, the the quadratic functional
in the exponent of the posterior density can be written as

HL£C||2 + (y — Aa:)TF 1 (y — Azx) = x TGx — 2xTATFnOISey + 4T

noise nOlSGy
=(x—2)'G(x — %) +c,

where ¢ € R depends only on y, not on z, and

— 1 4T 1 T
r=G A ansey_ pOStA Fn01sey
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If Ker(L) N Ker(A) # {0}, the ‘candidate posterior density’ is not a
proper probability density. Indeed, it readily follows that

rnl)aly]2) o exp (5 (1Ll + (y = ATy - Av))

1
= xp (=5 (ILPal? + (s — AP0 T 0 (0~ 4P2) ).
where P : R" — (Ker(L) N Ker(A))™" is an orthogonal projection. This
means that m,.(x)7(y | ) is a constant as a function of the component

of x in the direction of the non-trivial subspace Ker(L) N Ker(A), and
thus its integral over the whole R™ does not attain a finite value.
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Using conditioning to create proper priors

Suppose that we would like to have a prior density of the form

1
Tpr(T) X exp <—§xTLTLx> : x € R",

where L € R¥*" is some given matrix. As we have already seen, if L is
not injective, such a prior is improper. One technique for obtaining a
proper prior based on 7, (x) is fixing the values of some components of

x, and then considering 7, as a probability density of the remaining
ones.

To this end, we partition = as = = [(2') 1, (”)*]!, where, possibly after
reordering the components, z’/ € R/, 0 < j§ < n, contains the fixed
components and ' € R™"™7 carries the unspecified ones.
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Let us partition the matrix L1 L accordingly, i.e.,

Tr —. B — Bi1  Bio
By Bos|

where By, € R("=3)X(n=3) and By, € RI*J are symmetric, and

Bis € R("=9)XJ and By, € RIX("=7) satisfy By = BJ,. In what
follows, we assume that By invertible. This can often be achieved by
fixing sufficiently many components of x, i.e., by choosing " to be

extensive enough.

Let us derive the conditional density of X’ given X" = 2 properly for
once, i.e., in such a way that no constant of proportionality depends on
any of the variables at any stage:
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Taking into account that this time we have partitioned our original
candidate for the inverse covariance of X, it follows with some work
from the second theorem of the fourteenth lecture that the (improper)
marginal density of X" is

where By; = Bay — By B! Bio € R7*J is the Schur complement of

B11. Moreover, it is a straightforward consequence of the partitioning of
B that

1
m(z’,2") oc exp (‘5((37/)T311w’ +2(z") " Brga” + (CU”)TB22$”)) :
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Without paying too much attention to the fact that some densities may
be improper, we then write
’ﬂ'(:L'/, ZL’”)

m(z')

1
X exp (—5(($/)TBHZB/ + 2(2") ' Broz” + (x”)TBngl_llBlgx”)>

m(z'|2") =

1
= ©Xp (‘5( "+ B1_11312$//)T311(33/ + B1_11312$//)> '

NB: One could have obtained this same formula for w(x | z") by just
excluding m(x"") and all other multipliers that depend only on z”'. At the
end, one could have then argued that 7(z’ | ') must be Gaussian, and
thus the constant of proportionality between w(x’ | ") and the last line
above cannot depend on 2z, but only on Bi;. Such argument shows
also that the constants of proportionality in the theorems presented at
the fourteenth lecture do not depend on any of the variables.

376



To create a prior density that is proper for all components of X we may
now proceed as follows. We first define a proper Gaussian probability
distribution for the variable X" € R/,

X// ~ N(:L)g, ]:‘\//)7

where I'” € R7*J is symmetric and positive definite. The corresponding
density is denoted by .

Then, we obtain a new candidate for the prior density of X by writing

7~Tpr($/,$//) _ 7T($/ ’ $//)7T0($//)
_1 / —1 1\T / —1 1
X exXp 2(33 + Bll BlQCIZ ) Bll(CIZ + Bll BlQCIZ )
1
<exp (50" = o)) o~ o) )
= exp <—1($ —20) T o (2 — on))
9 prior )
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where the mean xo € R™ and the covariance fprior € R™ ™ can be
obtained relatively easily by completing the squares:

—1 /!
o —
!/
L
and
_ - -1
- B11 Bis

I‘prior

By, B9y B !By + (I")~!
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Exploring non-Gaussian densities
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Why sampling is needed?

Remember that the CM estimate and the conditional covariance require

solving integration problems involving the posterior density:

zem = E{z |y}t = | an(z|y)de
Rn

cov(z|y) = /n(:U —zom) (2 — zom) (x| y)de.

In a non-Gaussian case, these integrals cannot typically be expressed in a
closed form, and one must thus resort to numerical integration in R".
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Suppose that our aim is to estimate some quantity of the form

7= / ()7 (z)da.

How about using quadrature rules? In principle, we could approximate

I = /f(CIZ)W(CC)dJ? ~ ijf(xj)ﬁ(xj),

with some suitable weights {w, } and nodal points {x;}. Unfortunately,
if n is large, such computation is not feasible: For a quadrature rule with
k discretization points per dimension, the total number of nodes is

N = k™. In addition, the realization of a quadrature rule would require
reliable information about the location of the probability density .
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Often it is more advisable to resort to sampling: Draw a large enough
sample {z;}_, from the probability distribution corresponding to m(x),
and use these points to approximate the integral as

I= [ f@r@)dz = B{f(O} = 1 3 flay).

According to the Law of Large Numbers,

310 = g1y =1

almost surely, i.e., the sample average converges almost surely to the
expected value. Furthermore, the Central Limit Theorem states that

var(f(X))
N Y
I.e., the discrepancy between I and Iy should go to zero like 1/\/N

var(Iy — I) &~
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Markov Chain Monte Carlo
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Random walk in R"

Random walk in R™ is a process of moving around by taking random

steps. Elementary random walk:
1. Choose a starting point o € R™ and a 'step size’ ¢ > 0. Set k = 0.
2. Draw a random vector wg11 ~ N(0,1) and set 2411 = g + oWy 1.

3. Set k£« k + 1 and return to step 2, unless your stopping criterion is

satisfied.

The location of the random walk at time k is a realization of the random

variable X, and we have an evolution model

X1 = X + Wi, Wig1 ~N(0,1).
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The conditional density of X1, given X = xy, is

1 | ,
T(Tht1 | T) = (Oro?yniz P — 5o Tk = Tesa | ) = a(@k, Tr1)-

The function ¢ is called the transition kernel. Since ¢ does not depend
on k, i.e., the step is always distributed in the same way, the kernel is

called time invariant.

The process above defines a chain { X} }72, of random variables. This

chain is a discrete time stochastic process. Note that

m(Tpa1 | To, 1, s xk) = T(Tpr1 | Tk),

i.e., the probability distribution of X1 depends on the past only
through the preceding element X;.. A stochastic process with this
property is called a Markov chain.
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Example: Random walk in R?

A random walk model in R?:
X1 = Xi +0Wig, Wis1 ~N(0,0), C € R**2

Since C' is symmetric and positive definite, it has positive eigenvalues
and allows an eigenvalue decomposition

C =UDU".
Hence, the inverse of C' can be written as

C—l _ UD—IUT _ (UD—I/Q) (D_l/QUT),

\ 7
"~

=L

which means that the transition Kernel can in turn be given as

1
q(T; Tp41) = T(Tp41 | T)) < exp (—r‘gHL(CIfk - lelc+1)HQ> :
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Consequently, the random walk model becomes
Xps1 =X+ oL Wip1, Wit ~ N(0,1),

where we have used the fact that L is the whitening matrix of Wy .

To demonstrate the effect of the covariance matrix, let

U = [u®, u®] = cost) —sinf | g T
sinff  cos® 3

and
D = diag(s{,s3),  s1=1, sp =4.

In the light of this random walk model, the random steps should on
average have a component about four times larger in the direction of the
second eigenvector e; than in the direction of the first eigenvector e;.
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-2 -1 0 1 2 -4 -2 0 2 4 6 8

On the left, three random walk realizations for C' = I; on the right, three
realizations for C' given above. In both cases, o = 0.1 and z¢ = [0,0]*.
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How about sampling from a given density p(z)?

Assume now that X is a random variable with a probability density
m(z) = p(@).

Consider an arbitrary transition kernel ¢(x,y) that we use to generate a
new random variable Y given X = z, that is,

m(y|x) = q(z,y).
The probability density of Y is found via marginalization,
w(w) = [ w(y|0)r(@)iz = [ ale.yp(a)ds.

If the probability density of Y is equal to the probability density of X,
l.e.,

/ﬁwwmwazmw,

we say that p is an invariant density of the transition kernel .
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To summarize, if p is an invariant density of the transition kernel ¢ and
the random variable X obeys the density p, then the random variable Y
defined via the conditional density 7(y | z) = q(x,y) is still distributed
according to the density p. Loosely speaking, the transition defined by ¢
does not affect the distribution of X.

This property of invariant densities and corresponding transition kernels
can be put to use in sampling.
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Theorem. Let { X} }7° , be a time invariant Markov chain with the
transition kernel g, i.e.,

(1 |Tk) = q(Thy Tht1)-

Assume that p is an invariant density of ¢, and that q satisfies some
extra technical conditions (irreducibility and aperiodicity). Then, for all
xo € R and any Borel set B € R"™, it holds that

Nlim P{Xy € B| Xg=uz¢} = / p(x)dx.
— O B

Moreover, for any regular enough function f,

fim_ > (6) = [ S@pade

N—>ooN,

almost surely.

Proof. Proof is omitted due to obvious reasons. ]
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Let us try to put the above theorem into practical use. Suppose that we
want to sample some probability density p and happen to know that it is
invariant with respect to some transition kernel g. Then, we can proceed
as follows:

1. Select a starting point xg and set £ = 0.
2. Draw zpyq from g(zg, xx11)-

3. Set k£ «— k + 1 and return to step 2, unless your personal stopping
criterion is satisfied.

According to the previous theorem, the sample {zx}1_, should give a
better and better representation of p as IV increases.

Hence, we are facing an inverse problem: Given a probability density p,
we would like to find a kernel q such that p is its invariant density.

Very popular technique for constructing such a transition kernel is the
Metropolis—Hastings algorithm.
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Metropolis—Hastings algorithm

Let us introduce a slightly more general Markov process: If you are
currently at some x € R", either

1. stay put at x with the probability r(z), 0 < r(x) <1, or
2. move away from x using a transition kernel R(x,y) otherwise.

Since R is a transition kernel, the mapping y — R(x,y) defines a
probability density, and thus

/ R(x,y)dy =1, for all z € R™.

Denote by A the event of moving away from = and by —.A the event of
not moving, meaning that

P{A} =1—r(x), P{-A} =r(x).
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What is the density of Y generated by the above strategy, given X = z7?

Let B C R™ be a Borel set and let us write
P{lYeB|X=z}=P{YeB|X=ux AP{A}
+P{Y e B| X =z,-A}P{-A}.

The probability of arriving in B if we happen to move:
P{YeB|X=x A} = / R(x,y)dy.
B
Arriving in B without moving happens only if x € B, i.e.,

1, ifxeB,

PlY e B| X =2x,-A} = xp(x) :=
{ ’ } 5(7) 0, ifzx¢&B.
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To sum up, the probability of reaching B from x is

P{lYeB|X=z}=(1-r(x)) /B R(x,y)dy + r(x)xB(x).

Finally, the probability of Y € B is found through marginalization:

P{Y € B} = /P{Y € B| X = alp(x)ds

:/p(gj) (/B(l—r( xydy>d:£+ X5 (2
:/B</p(aj)(1—7“( a:yda:)dy—l— BT
:/B(/p@c)(l—r( )R(z,y)dz + 1 <>p<y)
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By definition
P e B} = [ iy
B

and comparing this with the above formula, we see that the probability
density of Y must be

r(y) = / p(2)(1 — r(2))R(z,)dz + r()p(y).

Our ultimate goal is to find a kernel R and a probability r such that
w(y) = p(y), that is,

ply) = / p(2)(1 — r(2))R(z,9)dz + r(5)p(y),

or, equivalently,

(1 — r(y))ply) = / p(x)(1 — r(z))R(z, y)dz.
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Denote
K(:E,y) — (1 - ?“(ZE))R(CU,y),

and observe that, since R is a transition kernel,

[ Kwade = (1= 1) [ Ry 2)dz =1~ 1),

The condition at the bottom of the previous slide can thus be written as

[ K 2)de = [ pla) Kz y)ds,

which is called the balance equation. This condition is satisfied, in
particular, if the integrands are equal, i.e.,

p(y)K(y7 CE) — p(CE)K(ZE, y)

This condition is known as the detailed balance equation. The
Metropolis—Hastings algorithm is simply a technique for finding a kernel
K that satisfies the detailed version of the balance equation.
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Start by selecting a candidate generating kernel q(x,y), then define

p(y)q(y, ) } |

p(z)q(z,y)

a(x,y) = min {1,

and finally set
K(z,y) = a(z,y)q(z,y).
A simple calculation shows that such K satisfies the detailed balance
equation, I.e.,
p(y)aly, x)q(y, z) = p(z)a(z, y)a(z,y).

To convince yourself, take note that for any x,y € R"™ either

G(o. ) = p(y)a(y, x)

p(z)q(z,y) and  a(y,z) =1,

or

a(x,y) = and a(y,x) =
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The actual Metropolis—Hastings algorithm for drawing samples is as
follows:

1. Given z, draw y using the transition kernel q(x,y).

2. Calculate the acceptance ratio,

p(y)q(y, x)
p(x)q(z,y)

oz(:v,y) =

3. Flip the a-coin: Draw t ~ Uniform(|0, 1]). If a > t, accept y.
Otherwise stay put at .
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Does the above algorithm really work? It is not quite obvious...

Yes, it does. According to our construction, the Markov process
introduced at the beginning of this section, i.e., the one involving R and
r, is with the choice

K(z,y) = (1 —r(z))R(z,y) = a(z,y)q(z,y)

such that p is its invariant density. Note, in particular, that for this
choice, it holds that

P{AandY e B| X =z} =(1-— r(x))/ R(x,y)dy = / K(x,y)dy,
B B

which is something that the actual algorithm should also satisfy. In other

words, everything is OK if for the above introduced algorithm the

probability that “the move is accepted and Y € B” under X = x is given

by this same formula. (It does not matter what happens to Y if the

move is not accepted, because then we do not move in any case.)
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For the actual algorithm we have
P{A|Y =y, X =2} =min{l, a(z,y)} = a(z,y)

and

P{YeB| X =x}= /Bq(x,y)dy.

Hence, it follows in the case of the algorithm that

P{AandYeB|X:x}=&(x,y)/

q(x,y)dyz/ K(z,y)dy,
B B

which means that everything really works as it should.
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Example

Consider sampling in R? from the density

7(z) o exp (-10(;@ —9)? — (g — 3)4) |
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We use white noise random walk proposal

1 1 ,
q(x,y) = exp (—W\!x—yll )

V2my?

Note that now the transition kernel is symmetric, i.e.,

q(z,y) = q(y,x),
and hence

™(y)

a(x,y) = W
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v = 0.02
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Acceptance rates:
v =0.02: 95.6 %
v=0.7: 24.5 %
v=4:14%
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Sample histories:

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

500

1000

1500

2000

2500
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Metropolis—Hastings algorithm (continued)

Recall the Metropolis—Hastings algorithm for drawing samples from a

given probability density p : R® — R.
1. Choose x5 € R". Set k = 0.
2. Given xj, draw y using the transition kernel ¢(xx,y) of your choice.
3. Calculate the acceptance ratio,

p(y)q(y, 1)
p(zr)q(zr, y)

a(xk,y) =
4. Flip the a-coin: Draw t ~ Uniform([0, 1]). If a > ¢, set xx11 = v.

Otherwise, stay put at zg, i.e., set zp11 = k.

5. Set k£ «— k+ 1 and return to Step 2, unless your stopping criterion is
satisfied.

The constructed sample {x}};"_, should represent p if N is large enough.
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Adapting the Metropolis-Hastings sampler

With the white noise random walk proposal density (used in the
numerical example of the previous lecture), the sampler does not take
into account the form of the posterior density.

However, the shape of the density can be taken into account when
designing the proposal density, in order to minimize the number of
‘wasted proposals’. In high-dimensional setting, this becomes especially
useful if the posterior density is highly anisotropic, i.e., if the posterior is
stretched in some directions.

The proposal distribution can be updated while the sampling algorithm
moves around the posterior density. This process is often called
adaptation.
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Gibbs sampler
Let us first consider some notational details:
e [ ={1,2,...,n} is the index set of R".

o [ = U;”:l I,,, is a partitioning of the index set into disjoint
nonempty subsets.

e The number of elements in I; is denoted by k;; ky +--- 4+ ky,, = n.
e We partition R" as R” = R* x ... x R¥" and correspondingly
r=[xr;...;xr, ] € R ijERkj,
where x; € R is a component of the vector x;, if and only if ¢ € I;.

In practice, it often holds that k; =1 for all 7 = 1,..., m, meaning that

m =n and xj, is just the jth component of the original vector x.
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Transition kernel for the Gibbs sampler

Suppose that we are still aiming at sampling some given probability
density p : R™ — R, and recall the Markov process considered at the
previous lecture: If you are currently at some x € R"”, either

1. stay put at x with the probability r(z), 0 < r(x) <1, or
2. move away from x using a transition kernel R(x,y) otherwise.

Recall also that we made the definition

K(z,y) = (1 —r(z))R(z,y).

For the Gibbs sampler, we choose r(x) = 0 for all x € R"”, i.e., moving is
obligatory, and define

m

K(z,y) = R(z,y) = | [ p(ur,

1=1

yll,...,y[i_l,xjiﬂ,...,a:[m),
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where the conditional densities are defined in the natural way based
on p, l.e.,

p(yflv-“vyfmxfwrlv'--axfm)

p(yIz Yr,5- - - 7yf7;_17x11_|_17 s e 7x1m)

B kai p(y117" '7yf7;7xf,b-+1,- -.CC[m))dyIi .

Such a transition kernel K does not, in general, satisfy the detailed
balance equation, i.e.,

p(y) K (y,z) # p(x)K(z,y),
but it satisfies the (standard) balance equation,

| K@)z = [ pla) K.y,

which is a sufficient condition for p being an invariant density of the
above introduced Markov process. (See the slides of the previous lecture
for the details.)
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Proof: Consider first the left-hand side of the balance equation.

Due to the basic properties of probability densities, we have

/k p(xli LIyyee sy XL 15 YLigqy - - 7ylm)dxli =1
R74
for all i = 1,...,m. By integrating the kernel K(y,x) over RFm we
thus get
m
K(ya ZU)dCI?[m — / HP(CUIZ- LIyyee sy XL 5 YLigay - - 7ylm)dxlm
RfEm REm 1
m—1
— H p(xli LIysee s LTLi_ 19 YLigry -+ yfm) / p(xlm ’ LIpy - 7xlm—1)dxlm
1=1
m—1
— H p(xli LIyyee sy XL 15 YLigqy - - 7yfm)'
1=1
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Inductively, by always integrating with respect to the last block of z with
respect to which we have not yet integrated, we easily obtain that

altogether

K(y,z)dx =1,
Rn

which in turn implies that

| pwKa)de = plw) [ K.a)de = pl)
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Next, we consider the right-hand side of the balance equation. Since
K (x,y) is independent of x;, and due to the definition of marginal

probability densities, we have

/Rkl p(x)K(x,y)dr;, = K(x,y) /Rkl p(x)dxr, = K(z,y)p(zr,,...,T1,. ).

By substituting the definition of K in the above formula, we see that

|, p@K @, = K@ pplen,...a1,)

m
— <Hp(yli Yryy - - - 7y1¢—17x1i+1’ o ’xlm)>

1=2

X p(yr, |Tr,y - 21, )p(Xrys -, 21, )

yjl,...,y[i1,x[i+1,...,:v[m)> p(Yr, s T1ys -, T, ).

— <H p(yli
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Next, we integrate with respect to x7, over R*2. By denoting

a’i :p(yIz '7yI7;_17xI¢+17"'7xIm)7 ZZZ,...,m,

we may write

/ / p(x)K(x,y)dxr, dry, = / p(yr,, 1y, .-, 2, )dry,
Rk2 JRF1 RF2 7

’L:

:Haip(yfz’yhaka"'ax[m)/k p(y[1,$[2,...,.flf[m)d$[2
R72

1=3
™m
— Ha”ip(yfz |y1173713, o .. 7xfm)p(y[1,x[3, .. .,le[m>
1=3
m
— Ha,z-p(y[l,yjz,xjg), e T, ).
1=3
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We can continue inductively integrating over the remaining blocks

Tr,,...,2r, in turns, which eventually results in

| p@K s = pun - om,) = p0)

and the proof is complete.
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Gibbs sampler algorithm

1. Choose the initial value z° € R™ and set k = 0.

2. Draw the next sample as follows:
(a) Set x = x* and j = 1.
(b) Draw y;, € R*: from the k;-dimensional distribution
P YLy YL T ys - > T, )
(c) If j =m, set y = |yr,;-..;Ym] and terminate the inner loop.

Otherwise, set j «— j + 1 and return to step (b).

3. Set 2Ft! =y, increase k <+ k + 1 and return to step 2, unless the
chosen stopping criterion is satisfied.
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Single component Gibbs sampler algorithm

1. Choose the initial value 2° € R™ and set k = 0.

2. Draw the next sample as follows:
(a) Set x = x* and j = 1.

(b) Draw t € R from the one-dimensional distribution

p(t’yla e Yi—1,T541, - - .,an) Ocp(yla s 7yj—17t7xj—|—17 <. 7xn)

and set y; =t.

(c) fj=mn,sety=[y1,...,ys]" and terminate the inner loop.
Otherwise, set j < j + 1 and return to step (b).

3. Set 2Ft! =y, increase k <+ k + 1 and return to step 2, unless the
chosen stopping criterion is satisfied.
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Example

Consider again the density

1

7(x) o exp (-10(;5% — )2 — (2g — Z>4) , zeR2
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Sample histories for 21 and zs:

15 T T T T T T T T T

-15 I I I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

I I
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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How to judge the quality of a sample?
Essential questions:
e What sampling strategy and/or proposal distribution works the best?
e Is the sample big enough?
Consider estimates of the form
|
[ f@m@)de = B0}~ 3 3 o)),
j=1

and recall that the Central Limit Theorem gives some answers regarding

the convergence.
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Assume that the variables Y, = f(X;) € R are mutually independent
and identically distributed with E{Y;} = y and var(Y;) = o, and define

N ~
~ 1 VN(Yn —y)
YN:N;YJ- and  Zy = .
J:

o

Then, Yy — E{Y} almost surely (LLN). Moreover, Zy is
asymptotically (standard) normally distributed, that is,

1 i 1
lim P{Z, <z} = — exp | ——s° | ds.
Jm Pz = o [ e (-50)

Loosely speaking, the above result says that the approximation error

behaves as
| N

J=1

VN

provided that the samples {z;} are independent.
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Let us have another look at the sample histories corresponding to our
standard example. First, the Metropolis—Hastings algorithm for the three
choices of « (the vertical component is plotted):

:NM%MMM

1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

-1F -
| | |

! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Clearly, consecutive elements are not independent.
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Then, the Gibbs sampler (both components are plotted):

15

|
0.5 I

0

! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

! ! ! ! ! !
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

The results are somewhat better, but there is still some correlation
between consecutive elements — especially for the vertical component.
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If every kth sample point is independent, one might expect the

discrepancy to behave as 1/4/N/k = \/k/N instead of 1/v/'N.

Consequently, one should try to choose the proposal distribution so that
the correlation length is as small as possible.

Quick visual assessment: Take a look at the sample histories of
individual components. How should they look like?

Consider a white noise signal, where the sample points are independent
and the sample history looks like a "fuzzy worm". This is something one

could aim at.

-4 ! ! ! ! !
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
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Autocovariance and correlation length

Denote by f.(x;) € R, j =1,..., N, the centered sample points, i.e.,
|

Define the normalized autocovariance of the sample as

1

N—k

where 7§ = ~ Zjvzl fe(x;)? is the mean energy of the signal.

The correlation length of the sample {f(:vj)}j.il

on the decay of the normalized autocovariance sequence of the sample.

can be estimated based
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For a white noise sample, 7,3 ~ 0 for any k > 0, where the estimate gets
better as the sample, i.e., N, increases.

We test this hypothesis by drawing two white noise samples (N = 5000
and N = 100000) and plotting the function k +— ~7 in both cases.

N=5000 N=100000
1 - 1 .
0.8 1 0.8¢
0.6¢ 1 0.6}
0.4¢ 1 0.4¢
0.2¢ 1 0.2}

0 50 100 0 50 100

432



Normalized autocovariance sequences for the MH example.

~ = 0.02 v =0.7 N =4

0.4

0.2

0 50 100

433



Normalized autocovariances for the Gibbs example;
horizontal component in blue and vertical in red.

0.8

o

0.7

0.6

0.5

0.4f ¢

0.3r
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Hypermodels
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In the statistical framework, the prior densities usually depend on some
parameters such as variance or mean. Typically — or at least thus far
—, these parameters are assumed to be known.

Some classical regularization methods can be viewed as construction of
estimators based on the posterior density (e.g., Tikhonov regularization).
The regularization parameter, which corresponds to the parameter that
defines the prior distribution, is not assumed to be know, but selected

using, e.g., the Morozov discrepancy principle.

What happens if it is not clear how to choose these ‘prior parameters’ in

the statistical framework?

If a parameter is not know, it can be estimated as a part of the statistical
inference problem based on the data. This leads to hierarchical models
that include hypermodels for the parameters defining the prior density.
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Assume that the prior distribution depends on a parameter o« which is
not assumed to be known. Then we write the prior as a conditional
density, that is,

Tpr (2 | ).
Assuming we have a hyperprior for o, i.e.,
Thyper (@),
we can write the joint distribution of x and « as
(T, ) = 7Tpr(aj | O‘)Whyper ().

Assuming a likelihood model 7(y | x) for the measurement data y, we
get the posterior density for z and «, given y, from the Bayes formula:

m(z,aly) < w(y | z)n(z, a) = 7(y | x)m(z | @) Thyper ().
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In general, the hyperprior density myper may depend on some
hyperparameter «. In such a case, the main reason for the use of a
hyperprior model is that the construction of the posterior is assumed to
be more robust with respect to fixing a value for the hyperparameter o

than fixing a value for «.

Sometimes o can also be treated as a random variable with a respective
probability density. Then, we would write

Thyper (| Q0),

giving rise to nested hypermodels.
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Example: Hypermodel for a deconvolution problem
(Adapted from the textbook by Calvetti and Somersalo, Chapter 10)

Consider a one-dimensional deconvolution problem, the goal of which is
to estimate a signal f : [0,1] — R from noisy, blurred observations

modelled as
/Asz, t)dt + e(s;), 1 <i<m,

where {s;}™, C |0, 1] are the uniformly distributed measurement points,

the blurring kernel is defined to be

Als.t) = exp (55 (- 9.

and the noise is Gaussian, or more precisely e ~ N (0, 021).
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To begin with, we discretize the model as
y = Ax + e,

where A € R™*"™ is obtained by approximating the integral with a
suitable quadrature rule, and the vector x contains the values of the
unknown signal at the discretization points {¢;}"_, that we have chosen
to be distributed uniformly over the interval [0, 1]. To be more precise,

xj:f(tj)v tj:_a Oéjén

For simplicity we assume it is known that f(0) = x¢o = 0, and define the
actual unknown x to be
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Assume that as prior information we know that the signal is continuous

except for a possible jump discontinuity at a known location.

Let us start with a Gaussian first order smoothness prior,

1
Tpr(T) X exp <_2—’Y2HLCEH2) :

where L is a first order finite difference matrix (recall that zo = 0),

1

L = | | c R"*™,
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It is easy to see that L is invertible and

1
1 1

r ... 1 1

is a lower triangular matrix. Since 1L is the whitening matrix of

v
X € R"™ distributed according to 7, (x) — see the twelfth lecture —, it

follows that

X =L'w, W ~ N(0,7°1).

Due to the particular shape of L=, this relation can alternatively be

given as a Markov process:

X; =X, 1+ W, W, ~N(0,7%), j=1,...,n, Xo=0.
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Next, we aim at fine-tuning the the above smoothness prior so that it
allows a jump discontinuity over the interval [t;_1,tx].

To this end, we modify the above Markov model (only) at j = k by

setting
2

X = Xp—1 + W, Wi NN<0,g—2> :
where § < 1 is a parameter controlling the variance of Wy, i.e., the
expected size of the jump.

Let us walk the the above steps backwards: It is easy to see that this
new Markov process can alternatively be given as

X = L7'DY)TW, W~ N(0,4°D),

where
DY? = diag(1,1,...,6,...,1,1) € R™*"

is defined so that (D'/2)~! scales the kth component of W by 1/6.
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In consequence, after the above modification in the kth step of the
Markov process defining X, the random variable DY/2LX is distributed
according to N'(0,~2I), and thus we have introduced the fine-tuned

‘jump prior’

1
rinle) o exp (= 5102 L)

Let us draw samples from this kind of a prior density. We set n = 150
and v = 0.1, meaning that we expect increments of the order 0.1 at
most of the subintervals. As an exception, at two known locations

t ~ 0.4 and t ~ 0.8 we use 6 < 1 at the corresponding diagonal element
of D'/2 in anticipation of a jump of the order v/5 = 0.1/4.
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Random draws from the jump discontinuity prior with two different values of §.

0=0.1 0=0.02
4 ' 10,
21 |
’C> A M 0 Mf"”}q
0f (\INM V\/ ] L\,._.f/‘“

-5t
2 -10¢

(v

-4 ' -15 | ' '

0 0.5 1 0 50 100 150
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As the additive noise was assumed to be Gaussian, the likelihood density
corresponding to the considered measurement is

1
w(y|x) x exp (—ﬁﬂy — Ax||2) :

and due to the Bayes formula, the posterior density can thus be written

as
1

1
sl = AslP = 5 1DV2La? )

72| y) ox exp (—

Using the results for Gaussian densities from previous lectures, the mean
of the posterior, which is also the MAP and the CM estimate, can be
written explicitly as

2 —1
TCM = TMAP — (%LT(D1/2)TD1/2L + ATA> ATy
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The original signal f(¢) and the measurement data (w ~ 0.05):

signal f(t)

0.2

0.4

0.6

0.8

—-0.02
0
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0.08¢

0.06¢1

0.04¢
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measurement data




1.2

0.8}

0.61

0.41

0.2}

Posterior estimates for f without the discontinuity model (i.e., with the
mere first order smoothness prior) and with the discontinuity model with

known locations and jump sizes (v = 0.1):

MAP estimate without jump model

0.6

MAP estimate with jump model, known location and size

1.2

0.8¢

0.61

0.4r

0.2¢
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Next we choose v = 0.01 that corresponds to increments of the order of
0.01 at each subinterval, and scale ¢ accordingly so that it is in
accordance with jump sizes of the order 1.

1.2

0.8}

0.61

0.41

0.2}

MAP estimate without jump model

MAP estimate with jump model, known location and size

1.2

0.8¢

0.61

0.4r

0.2¢
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Assume next that the locations and expected sizes of the jumps are not
known, but we expect a slowly varying signal that could have a few
Jjumps at unknown locations.

We modify the Markov model to allow different increments at different
positions:

1
X; =X, 14+ W, Wj~N<o,0—), 0,>0, j=1,...,n
J

The corresponding prior model can be obtained in the same way as
above:

1
Tpr(T) X exp (—§HDl/2Lx||2> :

where this time around

D'/? = diag(6;/%,05/%,...,61/%).

T

If we knew the vector 0 = [01,...,0,]", we could proceed as previously.
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If 0 € R™ is not know, it can be considered as a random variable and its
estimation can be included as a part of the inference problem. To this
end, we need to write the conditional density

Tor( | 0).

In this case, the normalizing constant of the density . (x| 6) is no
longer a constant, but depends on the random variable 6 and thus

cannot be ignored.

Recall the probability density of a n-variate Gaussian distribution:

) = <<2w>n1det<r>>1/2 o (~3172).

where the mean is assumed to be zero.
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In our case, I' = (LY DL)~1, where D = diag(6) € R"*". Recall that
the determinant of a triangular matrix is the product of its diagonal
elements, meaning that det(L) = det(L') = 1. Moreover, the
determinant of an inverse matrix is the inverse of the determinant of the

original matrix. Hence, it holds that

det(T")™* = det(L'DL) = det(L") det(D) det(L) = f[ 0;,

J=1

and the properly normalized density becomes

n 1/2
[Ti—19; 1
Tor(x|0) = < (;75”3 exp (—illDl/QLxHQ)

1 1 ] —
= o 310V + § Y )

j=1
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Next we need to choose a hyperprior density for 6. Qualitatively, we
should allow some components of 8 to deviate strongly from the

‘average'.

We decide to use an /;-type impulse prior with a positivity constraint:

Thyper (8) o 74 (6) exp —% S0,
j=1

where 7, () is one if all components of 6 are positive, and zero

otherwise, and v > 0 is a hyperparameter.
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The posterior distribution can then be written as
m(x,0|y) < w(y|z)m(x,0) = w(y | x)m(z|0)mThyper (0)

1

1 Y 1 —
xexp | =55y — Az||? — =||DY?Lx||? — = Zej + = Zlog 0,
20 2 2 j=1 2 j=1

if all components of 6 are positive, and 7(z, 6 |y) = 0 otherwise. It is
straightforward to see that the corresponding MAP estimate is the
minimizer of the functional

- -T2
F(z,0) = g T — ) + Wzlﬁj — leog 0;.
j= j=

over (z,0) € R” x R%.
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We apply a two stage minimization algorithm:

Choose some initial guesses for = and 6. Then, repeat the following two
steps until convergence is achieved:

1. Keep 6 fixed and update x to be the least squares solution of

;A >y
D1/2], 0

where D = diag(0).

2. Fix x and update 6 by minimizing F'(x, -) with respect to the
second variable. An easy calculation shows that this minimizer can
be given componentwise as

1
0, = ——, =1,...,n,
J wj2-+'y J

where w = Lx € R" is the vector of increments corresponding to x.
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MAP estimates for x and 0 provided by the above alternating algorithm
with v = 107° and the initial guesses o = 0 and 6y ; = 1/7,
7 =1,...,n. The data is the same as depicted on page 448.

MAP estimate with hypermodel % 10" 0
1.2 - - - - - -
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0.6 i I i i
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’ /
0.4 ’ ?
4l ? /
' :

I i
0.2 . f i
, l !

\\\\\ ‘ i I
O - L—-—-—-—-— i '
— 10 ! !

0.2 - - - = = MAP estimate 0 - . - L.
0 0.2 04 ... first iterate 0 0.2 0.4 0.6 0.8
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Another example: The original signal f(¢) and the measurement data.

measurement data
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MAP estimates for x and 0 provided by the above alternating algorithm
with v = 107° and the initial guesses o = 0 and 6y ; = 1/7,
7=1,...,n.

MAP estimate with hypermodel % 10 0
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The End.
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