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0 Pratial issues
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Information and materials

• The main information hannel of the ourse is the homepage:https://noppa.tkk.fi/noppa/kurssi/mat-1.3626/ .

• The text book is �J. Kaipio and E. Somersalo, Statistial andComputational Inverse Problems, Springer, 2005� (mainly Chapters2 and 3).

• Leture notes and exerise papers will be posted on the oursehomepage.
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Exerises

• The �rst exerise session will held on Friday, January 21, i.e., theday after tomorrow.
• Eah week there is one home assignment: The solution to theassignment in the exerise paper of the week m is to be returned tothe ourse assistant Stratos Staboulis/Matti Leinonen before theexerise session of the week m+ 1. (For example, the solution tothe home assignment of the �rst exerise paper should be returnedbefore the exerise session on Friday, January 28.)
• The ourse assistant will demonstrate `model' solutions to theexerises.
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EvaluationThe ourse grades will be based on the weekly home assignments and ahome exam.
• The home assignments onstitute 25% of the grade. Eah returnedsolution is given 0− 3 points; at the end of the ourse, the obtainedpoints will be summed and saled appropriately.

• The home exam onstitutes 75% of the grade. It will be held afterthe letures have ended � the exat timing will be agreed uponlater on. There will be a few, more extensive assignments that mustbe solved within a given time period (e.g., within one week).
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TimetableThe ourse extends over nine or ten weeks (plus leture breaks).

• The �rst half will onentrate on traditional regularizationtehniques (Staboulis as the ourse assistant).

• The seond half will examine inverse problems from a statistialview point (Leinonen as the ourse assistant).
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1 What is an ill-posed problem?
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Well-posed problemsJaques Salomon Hadamard (1865-1963):1. A solution exists.2. The solution is unique.3. The solution depends ontinuously on the data, in some reasonabletopology.
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Ill-posed problemsNuutti Hyvönen: The ill-posed problems are the omplement of thewell-posed problems in the spae of all problems.Examples:
• Interpolation.
• Finding the ause of a known onsequene =⇒ inverse problems.

• Almost all problems enountered in everyday life.When solving an ill-posed or inverse problem, it is essential to use allpossible prior and expert knowledge about the possible solutions.
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An example: Heat distribution in an insulated rodLet us onsider the problem
ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),where u(·, t) is the heat distribution at the time t > 0, f is the initialheat distribution, and the boundary onditions indiate that the heatannot �ow out of the 'rod' [0, π].Forward problem: Determine the `�nal' distribution u(·, T ) ∈ L2(0, π),

T > 0, if the initial distribution f ∈ L2(0, π) is known.Inverse problem: Determine the initial distribution f ∈ L2(0, π), if the(noisy) `�nal' distribution u(·, T ) =: w ∈ L2(0, π) is known.
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Forward problemThe solution to the forward problem an be given expliitly:

u(x, T ) =
∞∑

n=0

f̂ne
−n2T cos(nx),

where {f̂n}∞n=0 ⊂ R are Fourier osine oe�ients of the initial heatdistribution f , i.e., f =
∑∞

n=0 f̂n cos(nx) in the sense of L2(0, π).It is relatively easy to see that the solution operator

ET : f 7→ u(·, T ), L2(0, π)→ L2(0, π)satis�es the following onditions:
• ET is linear, bounded and ompat.
• ET is injetive, i.e., Ker(ET ) = {0}.
• Ran(ET ) is dense in L2(0, π). 11



Inverse problemSolving the inverse problem for a general �nal heat distribution

w ∈ L2(0, π) orresponds to inverting the ompat operator

ET : L2(0, π)→ L2(0, π), whih is obviously impossible.The unbounded solution operator
E−1

T : Ran(ET )→ L2(0, π)is, however, well-de�ned. In other words, the inverse problem has aunique solution if w = ET f for some f ∈ L2(0, π), i.e., themeasurement ontains no noise.Summary:

• If w ∈ Ran(ET ), the third Hadamard ondition is not satis�ed.

• If w /∈ Ran(ET ), none of the Hadamard onditions is satis�ed.(Due to noise et., the latter ase is usually the valid one in pratie.)12



Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always ontains someinformation about the initial heat distribution.
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Heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Another heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Comparison of the two at t = 0, 0.01, 0.1, 1 and 10.
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2 Classial regularization methods
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2.1 Fredholm equation
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Separable Hilbert spaeA vetor spae H is a real inner produt spae if there exists a mapping

〈·, ·〉 : H ×H → R satisfying1. 〈x, y〉 = 〈y, x〉 for all x, y ∈ H.2. 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 for all x1, x2, y ∈ H, a, b ∈ R.3. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇔ x = 0.Furthermore, H is a separable real Hilbert spae if, in addition,1. H is omplete with respet to the norm ‖ · ‖ =
√

〈·, ·〉.2. There exists a ountable orthonormal basis {ϕn} of H with respetto the inner produt 〈·, ·〉. This means that
〈ϕj , ϕk〉 = δjk and x =

∑

n

〈x, ϕn〉ϕn for all x ∈ H.
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Fredholm equationLet A : H1 → H2 be a ompat linear operator between the realseparable Hilbert spaes H1 and H2. In the �rst half of this ourse, wemainly onentrate on the problem of �nding x ∈ H1 satisfying theequation
Ax = y, (1)where y ∈ H2 is given. (In this setting, ompat operators are thelosure of the �nite-dimensional operators, i.e., loosely speakingmatries, in the operator topology.)Examples:

• In the example of Setion 1, we have A = ET and
H1 = H2 = L2(0, π).

• The most important ase on this ourse is H1 = R
n, H2 = R

m and

A ∈ R
m×n is a matrix. 20



2.2 Trunated singular value deomposition
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Orthogonal deompositionsLet A∗ : H2 → H1 be the adjoint operator of A : H1 → H2, i.e.,

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ H1, y ∈ H2.We have the orthogonal deompositions

H1 = Ker(A)⊕ (Ker(A))⊥ = Ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕Ker(A∗),where the �bar� denotes the losure of a set and
Ker(A) = {x ∈ H1 | Ax = 0},
Ran(A) = {y ∈ H2 | y = Ax for some x ∈ H1},

(Ker(A))⊥ = {x ∈ H1 | 〈x, z〉 = 0 for all z ∈ Ker(A)}, etc.
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Charaterization of ompat operatorsThere exist (possible ountably in�nite) orthonormal sets of vetors

{vn} ⊂ H1 and {un} ⊂ H2, and a sequene of positive numbers {λn},

λk ≥ λk+1 and limn→∞ λn = 0 in the ountably in�nite ase, suh that

Ax =
∑

n

λn〈x, vn〉un for all x ∈ H1 (2)and, in partiular,
Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.(Conversely, if A : H1 → H2 has this kind of deomposition, it isompat.)The system {vn, un, λn} is alled a singular system of A, and (2) is asingular value deomposition (SVD) of A. (Note that 1 ≤ n ≤ ∞ or

1 ≤ n ≤ N <∞ depending on rank(A) := dim(Ran(A)).)23



Solvability of Ax = yIt follows from the orthonormality of {un} that

P : H2 → Ran(A), y 7→
∑

n

〈y, un〉un,is an orthogonal projetion, i.e., P 2 = P and Ran(P ) ⊥ Ran(I − P ).The equation Ax = y has a solution if and only if

y = Py and
∑

n

1

λ2
n

|〈y, un〉|2 < ∞. (3)

In ase that (3) is satis�ed, all solutions of Ax = y are of the form

x = x0 +
∑

n

1

λn
〈y, un〉vnfor some x0 ∈ Ker(A). 24



Intuitive interpretation of the solvability onditions:

• The �rst ondition, y = Py, states that y annot have omponentsin the orthogonal omplement of Ran(A) if y = Ax.

• The seond ondition, i.e., the onvergene of the series

∑

n

1

λ2
n

|〈y, un〉|2,

is redundant if rank(A) <∞, in whih ase Ran(A) = Ran(A). Onthe other hand, if rank(A) =∞, this ondition is equivalent toasking that the norm of
x = x0 +

∞∑

n=1

1

λn
〈y, un〉vn, x0 ∈ Ker(A),

is �nite, i.e., the `potential solutions' belong to H1.25



Computational methods in inverse problemsNuutti Hyvönen, Matti Leinonen and Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiSeond leture, January 21, 2011.
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2.2 Trunated singular value deomposition(ont.)
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Summary of the previous letureThe problem: Find x ∈ H1 that satis�es the equation

Ax = y,where y ∈ H2 is given and A : H1 → H2 is a ompat linear operator.Singular value deomposition (SVD):
Ax =

∑

n

λn〈x, vn〉un for all x ∈ H1.

The solutions: If solutions exist, they are of the form
x = x0 +

∑

n

1

λn
〈y, un〉vn,where x0 ∈ Ker(A).

28



Solvability onditions: There exists a solution if and only if

y = Py and
∑

n

1

λ2
n

|〈y, un〉|2 < ∞,
where P is a projetion onto Ran(A) = span{un}.The natural way to irumvent problems with the �rst solvabilityondition is to onsider the projeted equation

Ax = PAx = Pyinstead of Ax = y. However, this does not help with the seondondition sine there is no guarantee that
∑

n

1

λ2
n

|〈Py, un〉|2 < ∞for a general y ∈ H2, if rank(A) =∞, i.e., if Ran(A) is in�nite-dimensional. 29



Trunated singular value deomposition (TSVD)Let us de�ne a family of �nite-dimensional orthogonal projetions by

Pk : H2 → span{u1, . . . , uk}, y 7→
k∑

n=1

〈y, un〉un.Due to the orthogonality of {un},
P (Pky) =

∑

n

〈Pky, un〉un =
k∑

n=1

〈y, un〉un = Pky,and, moreover,

∑

n

1

λ2
n

|〈Pky, un〉|2 =
k∑

n=1

1

λ2
n

|〈y, un〉|2 <∞.(Note that one must hoose k ≤ rank(A) if the latter is �nite.)30



In onsequene, the problem

Ax = Pky. (4)satis�es the solvability onditions (3). The orresponding solutions aregiven by
x = x0 +

∑

n

1

λn
〈Pky, un〉vn = x0 +

k∑

n=1

1

λn
〈y, un〉vn ∈ H1.

By the trunated SVD solution of Ax = y for a given k ≥ 1, we meanthe xk ∈ H1 that satis�es (4) and is orthogonal to the subspae Ker(A).Sine {vn} span (Ker(A))⊥, it easily follows that suh xk is unique, hasthe smallest norm of the solutions to (4), and is given by
xk =

k∑

n=1

1

λn
〈y, un〉vn.
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An example: Heat distribution in a rod (revisited)Reall the heat equation
ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).The forward solution operator
ET : f 7→ u(·, T ), H1 = L2(0, π)→ L2(0, π) = H2is haraterized by

ET : vn 7→ λnvn,where {vn}∞n=0 = {
√

1
π} ∪ {

√
2
π cos(n ·)}∞n=1 form an orthonormal basisof L2(0, π), and λn = λn(T ) = e−n2T > 0 onverges to zero as n→∞.32



In onsequene, we have

ET f =
∞∑

n=0

λn〈f, vn〉vn,where the inner produt of L2(0, π) is de�ned in the usual way:

〈f, g〉 =

∫ π

0

fg dx, f, g ∈ L2(0, π).In this ase un = vn (beause ET is self-adjoint). Sine {vn}∞n=0 are anorthonormal basis for L2(0, π), we have
(Ker(ET ))⊥ = Ran(ET ) = L2(0, π),i.e., ET is injetive and has a dense range, as mentioned already earlier.In partiular, the projetion onto the losure of the range of ET is theidentity operator, i.e., P = I. 33



We thus dedue that there exists f ∈ L2(0, π) suh that

ET f = w,for a given w ∈ L2(0, π), if and only if

∞∑

n=0

1

λ2
n

|〈w, vn〉|2 =

∞∑

n=0

en4T 2 |〈w, vn〉|2 < ∞,

whih is a very restritive ondition and demonstrates why this inverseproblem is extremely ill-posed.Finally, note that the trunated SVD solution to this inverse problem is

fk =

k∑

n=0

1

λn
〈w, vn〉vn =

k∑

n=0

en2T 〈w, vn〉vn, k ≥ 0.
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The speial ase: H1 = R
n and H2 = R

mLet H1 = R
n and H2 = R

m, whih means that

Ax = yis a matrix equation or, in other words, a system of linear equations. Inpartiular, A ∈ R
m×n.Sine all operators of �nite rank, i.e., with �nite-dimensional range, areompat, we have the representation

Ax =

p
∑

j=1

λj(x
Tvj)uj =

p
∑

j=1

λjuj(v
T
j x), p ≤ min{n,m},

where {vj}pj=1 ⊂ R
n and {uj}pj=1 ⊂ R

m are sets of orthonormal vetorsand {λj}pj=1 are positive numbers suh that λj ≥ λj+1. (Note that

p = rank(A).)How an one write this deomposition in a neat matrix form?35



Let us introdue, e.g., by Gram�Shmidt proess, omplementary sets oforthonormal vetors {vj}nj=p+1 and {uj}mj=p+1, suh that the ompletedsystems {vj}nj=1 and {uj}mj=1 are orthonormal basis for R
n and R

m,respetively. Moreover, we set λj = 0 for j = p+ 1, . . . ,min{n,m}.Next, we de�ne three auxiliary matries:

V = [v1, . . . , vn] ∈ R
n×n,

U = [u1, . . . , um] ∈ R
m×m,

Λ = diag(λ1, . . . , λmin{n,m}) ∈ R
m×n.Here, Λ ∈ R

m×n is a diagonal matrix with the elements

λ1, . . . , λmin{n,m} on its diagonal; if m > n (resp. n > m), there are

m− n empty rows (resp. n−m empty olumns) at the bottom of Λ(resp. at the right end of Λ). Note that due to the orthonormality of

{vj} and {uj}, the matries V and U are orthogonal:
V TV = V V T = I and UTU = UUT = I.36



A simple omputation shows that

UΛV Tx =

p
∑

j=1

λjuj(v
T
j x) = Ax

for all x ∈ R
n. Hene, we have the deomposition

A = UΛV T.This is what we all the SVD in the ase of matries in R
m×n.In partiular, this is how Matlab understands the SVD.
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Note, in partiular, that the singular values {λj}min{n,m}
j=1 are justnon-negative � earlier they were assumed to be positive �, and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p+ 1 ≤ j ≤ n},

(Ran(A))⊥ = span{uj | p+ 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p}.
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Trunated SVD for a matrix A ∈ R
m×nThe trunated SVD solution, i.e., the solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p,where Pk → span{u1, . . . , uk} is an orthogonal projetion, is given inthe matrix framework by
xk =

k∑

j=1

1

λj
〈y, uj〉vj =

k∑

j=1

1

λj
vj(u

T
j y) = V Λ†

kU
Ty.

Here, Λ†
k ∈ R

n×m is a diagonal matrix, with min{m,n} number ofnon-negative elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on its diagonal.
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For the largest possible ut-o� k = p, the matrix

A† := A†
p = V Λ†

pU
T =: V Λ†UTis alled the Moore�Penrose pseudoinverse. It follows from the abovematerial that x† = A†y is the solution of the projeted equation

Ax = Ppy = Py,where P : R
m → R

m is, one again, the orthogonal projetion onto

Ran(A). However, sine the smallest non-zero singular value λp istypially extremely small in inverse problems, the use of pseudoinverse isoften very sensitive to inauraies in the data y.
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An example: Heat distribution in a rod (revisited)Reall one again the heat equation

ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).Our plan is to disretize the dependene on the spatial variable x, andthen investigate the properties of the orresponding inverse problemnumerially.To begin with, we introdue the step size h = π/100 and the grid points

xj = jh, j = 0, . . . , 100. Furthermore, we denote Uj(t) = u(xj , t).
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We approximate the seond derivative of u with respet to x at thepoint (xj , t) by the di�erene rule:

uxx(xj , t) ≈
1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 1 ≤ j ≤ 99.Furthermore, we disretize the boundary onditions by requiring that

ux(0, t) ≈ 1

h
(U1(t)− U0(t)) = 0 =

1

h
(U100(t)− U99(t)) ≈ ux(π, t).By solving this for U0(t) and U100(t) and substituting into the preedingdi�erene rule, we obtain altogether that

uxx(x1, t) ≈ 1

h2
(−U1(t) + U2(t)) ,

uxx(xj , t) ≈ 1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 2 ≤ j ≤ 98,

uxx(x99, t) ≈ 1

h2
(U98(t)− U99(t)) .

42



Denoting U(t) = (U1(t), . . . , U99(t))
T and F = (f(x1), . . . , f(x99))

Tand plugging the above approximations into the heat equation, we endup with a set of ordinary di�erential equations:

U ′(t) = B U(t), t ∈ R+,

U(0) = F,where B ∈ R
99×99 is a ertain tridiagonal matrix (see next slide).The forward solution orresponding to this spae-disretized problem anbe given with the help of the matrix exponent funtion as

U(T ) = AF,where A = A(T ) = eTB and T > 0.
43



In Matlab, the matries B and A = eTB an be formed by the followingsript, whih also forms the SVD and plots the singular values for A:T = 0.1; % sayN = 100;h = pi/N;B = diag(ones(N-2,1),-1) - 2*eye(N-1) + diag(ones(N-2,1),1);B(1,1) = -1; % the left boundary onditionB(N-1,N-1) = -1; % the right boundary onditionB = B/h^2;A = expm(T*B);[U S V℄ = svd(A); % SVDsemilogy(diag(S), 'LineWidth', 2);
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Let us next form a `wedge funtion', whih serves as the initial heatdistribution, and ompute the orresponding �nal distribution at

T = 0.1:x = linspae(h,pi-h,N-1); % the grid pointsa = 40/3/pi; b1 = -8/3; b2 = 20/3; % oeffiientsf = [a*x(1:35) + b1, -a*x(36:end) + b2℄';ind = f > 0;f = f.*ind;w = A*f; % final distributionplot(x, f, 'k', 'LineWidth', 2);hold onplot(x, w, 'r', 'LineWidth', 2);axis([0, pi, 0, 2.1℄)hold off
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Let us be a bit silly and try to reover the initial heat distribution byinverting A:f_stupid = A\w;plot(x, f_stupid, 'LineWidth', 2);whih results in a atastrophe as demonstrated on the next slide. This isnot surprising sine writingrank(A)in Matlab, gives the value 18. In other words, from Matlab's numerialpoint of view, A has only 18 linearly independent olumns � inpartiular, A is not (numerially) invertible.
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Let us be more lever and ompute the trunated SVD solution for

k = 18:k = 18; % the (numerial) rank of Ad = diag(S); % the singular valuesidk = [1./d(1:k); zeros((N-1)-k,1)℄; % invert only 18iBk = V*diag(idk)*U'; % the orresponding 'inverse'fk = iBk*w; % the 'solution'plot(x, f, 'k','LineWidth', 2); hold onplot(x, fk, 'LineWidth', 2); hold offWe have, atually, ommitted a severe inverse rime: If an inverseproblem is solved using the same disretization with whih the data wasgenerated, the results are typially overly optimisti. This problem ouldbe irumvented, e.g., by interpolating onto a sparser grid before theinversion. The 'inverse rime e�et' an also be redued by the additionof arti�ial noise. 50
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In pratie, the measurement is always inaurate. Let us thus add just atiny bit of noise in the measurement � so tiny that one ould barelyreognize it with naked eye. (In fat, this noise level orrespondsapproximately to the disrepany between data sets simulated with theabove introdued di�erene sheme and with an alternative methodbased on FFT and the SVD of the original solution operator ET .)wn = w + 0.001*randn(N-1,1); % noisy datafkn_stupid = iBk*wn;plot(x, fkn_stupid, 'LineWidth', 2);As demonstrated on the next slide, this approah does not workanymore. The reason is the following: The inverse of the 18th singularvalue is approximately 3.15 · 1012, whih means that the (ever so tiny)omponent of the noise vetor in the diretion v18 is heavily magni�ed.
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By trial and error, we deide to take the largest k = 8 singular valuesinto aount when omputing the trunated SVD solution:k = 8;idk = [1./d(1:k); zeros((N-1)-k,1)℄;iBk = V*diag(idk)*U';fkn = iBk*wn;plot(x, f, 'k','LineWidth', 2);hold onplot(x, fkn, 'LineWidth', 2);hold offThis is pretty muh the best one an do without additional informationabout the shape of the initial heat distribution. (For example, if we knewbeforehand that f is pieewise linear, suh information ould beinorporated in the inversion algorithm, whih would surely result inbetter reonstrutions.) 54
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56



Summary of the previous letureThe trunated SVD solution: For N ∋ k ≤ rank(A), there existunique xk ∈ H1 suh that
Axk = Pky and xk ⊥ Ker(A).where Pk : H2 → span{u1, . . . , uk} is an orthogonal projetion. Thissolution an be given as

xk =
k∑

n=1

1

λn
〈y, un〉vn.
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SVD notations for matries : For a matrix A ∈ R
m×n, the SVD isusually written as

A = UΛV T,where Λ ∈ R
m×n has the (non-negative!) singular values on itsdiagonal, and the olumns of V ∈ R

n×n and U ∈ R
m×m are omposedof the (extended!) orthonormal basis {vj}nj=1 and {uj}mj=1, respetively.The trunated SVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = V Λ†
kU

Tywhere Λ ∈ R
n×m has the elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on itsdiagonal. The matrix A† = V Λ†

pU
T is alled the Moore�Penrosepseudoinverse of A.

58



Morozov disrepany priniple(Let us return to the ase where H1 and H2 are general separable realHilbert spaes, and A : H1 → H2 is a ompat linear operator.)To make the trunated SVD a more useful tool, one should ome upwith some rule for hoosing the spetral ut-o� index k ≥ 1 appearing inthe trunated SVD problem
Ax = Pky and x ⊥ Ker(A).Unfortunately, it is di�ult (if not impossible) to invent a reliablegeneral sheme of doing this.However, there exists a widely used rule of thumb alled the Morozovdisrepany priniple.
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Assume that the measurement y ∈ H2 is a noisy version of someunderlying `exat' data vetor y0 ∈ H2. Furthermore, suppose that wehave some estimate on the disrepany between y and y0, i.e.,

‖y − y0‖ ≈ ǫ > 0.For example, it may be known that
y = y0 + n,where the vetor n ∈ H2 is a realization of some random variable withknown probability distribution. Knowledge about the statistis of nould be due to, e.g., alibrations of the measurement devie.
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The idea of the Morozov disrepany priniple is to hoose the smallest

k ≥ 1 suh that the residual satis�es

‖y −Axk‖ ≤ ǫ.Intuitively this means that we annot expet the approximate solution toyield a smaller residual than the measurement error � otherwise wewould be �tting the solution to noise.Does suh k exist?Yes, it does if ǫ > ‖Py − y‖, as explained below.
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If rank(A) =∞, it follows from Ran(A) = Ran(P ) ⊥ Ran(I − P ) that

‖Axk − y‖2 = ‖(Axk − Py) + (Py − y)‖2

= ‖Axk − Py‖2 + ‖(P − I)y‖2

=

∞∑

n=k+1

|〈y, un〉|2 + ‖(P − I)y‖2

→ ‖Py − y‖2 as k →∞,whih is the best one an do sine infz∈Ran(A) ‖z − y‖ = ‖Py − y‖ byvirtue of the projetion theorem. (However, there is no guarantee that

‖xk‖ would not explode as k →∞.)On the other hand, if p = rank(A) <∞,
‖Axp − y‖ = ‖Ppy − y‖ = ‖Py − y‖.(Usually, one should not hoose this large spetral ut-o� in pratie.)62



2.3 Tikhonov regularization
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Motivation of Tikhonov regularizationAs pointed out on the previous slide, the norm of the residual

‖Ax− y‖is minimized by the sequene of trunated SVD solutions {xk} as ktends to rank(A). Unfortunately, when inverse/ill-posed problems areonsidered, we typially also have
‖xk‖ → ∞ as k → rank(A).(If rank(A) =∞, this an be understood literally; if rank(A) = p <∞,this should be understood in the sense that the xp is usually rubbish �espeially, if the measurement y is noisy.)As a onsequene, it seems well-motivated to try minimizing the residualand the norm of the solution simultaneously.64



Tikhonov regularized solutionA Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonovfuntional
Fδ(x) := ‖Ax− y‖2 + δ‖x‖2,where δ > 0 is alled the regularization parameter.Theorem. A Tikhonov regularized solution exists, is unique, and is givenby

xδ = (A∗A+ δI)−1A∗y =

p
∑

n=1

λn

λ2
n + δ

〈y, un〉vn,where p = rank(A) ≤ ∞.
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Proof: Let us prove this laim only in the ase that H1 = R
n and

H2 = R
m; the general result follows from the same ideas, but requiressome more sophistiated funtional analysis.To begin with, note that

xT(ATA+ δI)x = ‖Ax‖2 + δ‖x‖2 ≥ δ‖x‖2 > 0if x 6= 0. In partiular, ATA+ δI ∈ R
n×n is injetive, whih means thatit is invertible due to the fundamental theorem of linear algebra.Hene,

xδ := (ATA+ δI)−1ATy ∈ H1is well-de�ned.
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Let {λj}pj=1 be the positive singular values of A, and {vj}pj=1 and

{uj}pj=1 the orresponding sets of singular vetors that span Ker(A)⊥and Ran(A), respetively.We expand xδ =
∑

(vT
j xδ)vj + Qxδ, where Q : R

n → Ker(A) is anorthogonal projetion. Aording to the �rst exerise of the �rst exerisesession,

(ATA+ δI)xδ =

p
∑

j=1

(λ2
j + δ)(vT

j xδ)vj + δ Qxδ .

Similarly,

ATy =

p
∑

j=1

λj(u
T
j y)vj .
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Equating these two expressions results in

(vT
j xδ) =

λj

λ2
j + δ

(uT
j y), 1 ≤ j ≤ p,and Qxδ = 0, whih altogether means that

xδ =

p
∑

n=1

λn

λ2
n + δ

(uT
j y)vn =

p
∑

n=1

λn

λ2
n + δ

〈y, un〉vn.
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Finally, onsider x = xδ + z, where z ∈ R
n is arbitrary. We have

Fδ(x) = ‖(Axδ − y) +Az‖2 + δ‖xδ + z‖2

= ‖Axδ − y‖2 + 2 (Az)T(Axδ − y) + ‖Az‖2

+ δ
(
‖xδ‖2 + 2zTxδ + ‖z‖2

)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2

+2zT
(
(ATA+ δI

)
xδ −ATy)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2 ≥ Fδ(xδ),where the equality holds if and only if z = 0. This shows that

xδ = (ATA+ δI)−1ATy is the unique minimizer of the Tikhonovfuntional. �
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Computational methods in inverse problemsNuutti Hyvönen, Matti Leinonen and Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiFourth leture, January 28, 2011.
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Summary of the previous letureMorozov disrepany priniple: Aording to the Morozov disrepanypriniple, for the trunated SVD solution xk ∈ H1 one should hoose thesmallest spetral ut-o� index N ∋ k ≤ rank(A) suh that

‖Axk − y‖ ≤ ǫ,where ǫ > 0 orresponds to the antiipated inauray in the data vetor

y ∈ H2. How to estimate suh ǫ is not trivial � one an even argue thatit is not unambiguous. Be that as it may, k is uniquely determined bythe Morozov disrepany priniple if
‖y − Py‖ < ǫ.
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Tikhonov regularization: The Tikhonov regularized solution xδ ∈ H1 isthe unique minimizer of the Tikhonov funtional

Fδ(x) := ‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expliitly by the formula
xδ = (A∗A+ δI)−1A∗y =

∑

n

λn

λ2
n + δ

〈y, un〉vnNote that the family of Tikhonov regularized solutions {xδ}δ∈R+

isparameterized by the positive real parameter δ > 0. (In the ase oftrunated SVD, the regularized solutions are parameterized disretely as

{xk}pk=1, where p = rank(A).)
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Properties of the Tikhonov regularized solutionThe Tikhonov regularized solution has the following intuitive properties.The proof of this theorem is omitted.Theorem. Let P : H2 → Ran(A) be an orthogonal projetion. Theresidual ‖Axδ − y‖ is stritly inreasing as a funtion of δ and it satis�es

lim
δ→0
‖Axδ − y‖ = ‖Py − y‖ and lim

δ→∞
‖Axδ − y‖ = ‖y‖.Moreover, if Py ∈ Ran(A), then xδ onverges to the solution of theproblem

Ax = Py and x ⊥ Ker(A)as δ → 0. On the other hand, if Py /∈ Ran(A), then the norm ‖xδ‖tends to in�nity as δ goes to zero.
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The Morozov priniple for Tikhonov regularizationAssume one again that the measurement y ∈ H2 is a noisy version ofsome underlying `exat' data vetor y0 ∈ H2, and that

‖y − y0‖ ≈ ǫ > 0.In the framework of the Tikhonov regularization, the Morozovdisrepany priniple advises to hoose the regularization parameter

δ > 0 so that the residual satis�es
‖y −Axδ‖ = ǫ.Suh a regularization parameter exists if

‖y − Py‖ < ǫ < ‖y‖.This follows from the above theorem beause the residual ‖y −Axδ‖ isontinuous with respet to δ. 74



Tikhonov regularized solution for matriesAssume one again that H1 = R
n and H2 = R

m. In this ase, theTikhonov funtional an be given as

Fδ(x) =

∥
∥
∥
∥
∥
∥




A
√
δI



x−




y

0





∥
∥
∥
∥
∥
∥

2

, I ∈ R
n×n, 0 ∈ R

n. (5)

It is interesting to notie that the normal equation orresponding to thisleast squares problem is (see 3. exerise of 1. exerise session)




A
√
δI





T 


A
√
δI



x =




A
√
δI





T 


y

0



 ,

or equivalently

(ATA+ δI)x = ATy.75



Bear in mind that one does not, atually, need to form this normalequation in Matlab when using Tikhonov regularization: After de�ning

K =




A
√
δI



 ∈ R
(n+m)×n and z =




y

0



 ∈ R
n+m,

the ommandxdelta = K\zomputes the Tikhonov regularized solution.Explanation: For non-square matries the mldivide ommand ofMatlab tries to solve the orresponding least squares problem. As uniqueminimizer is known to exist, this orresponds to multiplying z from theleft by the Moore�Penrose pseudoinverse of K (see 3. exerise of 1.session). As all n singular values of K are larger than √δ (see 1.exerise of 2. session) this pseudoinverse is well-behaved.76



An example: Heat distribution in a rod (revisited)Reall the disretized inverse heat ondution problem that wasdisussed during the seond and third letures. Let w be the simulatedheat distribution at T=0.1 with the `wedge funtion' as the initial data,and A the orresponding propagation matrix A=expm(TB). We add thesame small amount of noise as previously and ompute the Tikhonovregularized solution:wn = w + 0.001*randn(N-1,1);zn = [wn; zeros(N-1,1)℄; % augmented data vetorK = [A; sqrt(delta)*eye(N-1)℄; % augmented system matrixfdelta = K\zn; % Tikhonov regularized solution
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We do this for three di�erent values of the regularization parameter

δ = 1 (too large), δ = 10−8 (too small), and δ = 5.95 · 10−5, whihorresponds to the Morozov disrepany priniple: We assume here thatthe disrepany between the measured data and the underlying `exat'data equals the square root of the expetation value of the squared normof the noise vetor, i.e.,
ǫ =

√
99 · 0.0012 ≈ 9.95 · 10−3.Note that the value of δ given by the disrepany priniple depends onthe partiular realization of the noise vetor even though ǫ does not.The expetation value of the norm of the noise vetor would be as � ifnot more � logial hoie for ǫ, but it is more di�ult to write downexpliitly. (Lukily, these two hoies do not di�er that muh in theonsidered ase: numerial tests suggest that the latter gives

ǫ ≈ 9.92 · 10−3.) 78
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Generalizations of Tikhonov regularization

82



Tikhonov regularization for nonlinear problemsLet us brie�y onsider the nonlinear ase, where A : H1 → H2 is anonlinear operator and the examined equation is of the form

A(x) = y.A standard way of solving suh a problem is via sequential linearizations,whih leads to solving a set of linear problems involving the derivativeoperator of A.As an example, in Newton's method one would �rst pik an initial guess

x0 ∈ H1 and then try to produe the (j + 1)th iterate by solving thelinearized problem

A(xj) +A′(xj)(xj+1 − xj) = y, j = 0, 1, . . . ,reursively for xj+1. (In the general setting A′ is the Fréhet derivativeof A, but for �nite-dimensional operators it is just the Jaobian matrix.)83



Unfortunately, if large alterations of x produe only small hanges in

A(x), i.e., if the original equation is ill-posed, there is no guarantee thatthe orresponding linearized problems an be solved as suh � not evenin the least squares sense. Hene, regularization is needed.Unlike the trunated SVD method, Tikhonov regularization generalizeseasily to this nonlinear framework. Now, it amounts to searhing for

xδ ∈ H1 that minimizes the funtional
Fδ(x) = ‖A(x)− y‖2 + δ‖x‖2, δ > 0.Sine Fδ is no longer quadrati in x, it is not lear that a uniqueminimizer exists. Furthermore, even if a Tikhonov regularized solutionexists, it annot usually be given by an expliit formula.
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Be that as it may, one an try to minimize Fδ(x) by using somenonlinear optimization tehnique. One � but probably not the best �way of doing this, is to pik an initial guess xδ,0 ∈ H1 and thenreursively de�ne the (j + 1)th iterate xδ,j+1 ∈ H1 to be the uniqueminimizer of the xδ,j-dependent Tikhonov funtional

F̃δ,j(x) = ‖A(xδ,j) + A′(xδ,j)(x− xδ,j)− y‖2 + δ‖x‖2

= ‖A′(xδ,j)x− [y −A(xδ,j) +A′(xδ,j)xδ,j ]‖2 + δ‖x‖2,where the dependene of A on x has been linearized with xδ,j as thebase point. Sine this Tikhonov funtional is of the `standard form',

xδ,j+1 an be given expliitly with the help of A′(xδ,j), A(xδ,j), xδ,j , yand δ. (In pratie, evaluating A′(xδ,j) is often the most di�ult part.)Combining this with some reasonable stopping riterion does indeed givereasonable solutions for many nonlinear inverse problems.85



More general penalty termsA more general way of de�ning the Tikhonov funtional is

Fδ(x) = ‖Ax− y‖2 + δG(x),where the penalty funtion G : H1 → R takes non-negative values. Theexistene of a unique minimizer for this kind of funtional depends on theproperties of G, as does the workload needed for �nding the minimizer.One typial way of de�ning G is
G(x) = ‖L(x− x0)‖2, (6)where x0 ∈ H1 is a given referene vetor and L is some linear operator.The hoie of x0 and L re�ets our prior knowledge about the `feasible'solutions: Lx is some property that is known to be relatively lose to thereferene value Lx0 for all reasonable solutions. (In standard ase x0 = 0and L = I, the solutions are `known' to lie relatively lose to the origin.)86



The numerial implementation of Tikhonov regularization with G of (6)is approximately as easy as for the standard penalty term:In the ase that H1 = R
n and H2 = R

m, the operator L is just somematrix in R
l×n and the Tikhonov funtional an be given as

Fδ(x) = ‖Kx− z‖2 (7)where

K =




A
√
δL



 and z =




y

√
δLx0



 .

Assuming that the matrix L is hosen so leverly that all n singularvalues of K are (well) larger than zero, the Tikhonov regularized solutionan be omputed in Matlab by applying the pseudoinverse of K on z bythe ommandxdelta = K\z 87



Explanation: As shown in 3. exerise of 1. session, all minimizers of (7)satisfy the normal equation
KTKx = KTz.On the other hand, it was proved in 1. exerise of 1. session that thesymmetri matrix KTK ∈ R
n×n has n positive eigenvalues that are thesquares of the singular values of K. In partiular, this means that KTKis invertible, and thus there is exatly one minimizer for (7). This isgiven by K†z due to 3. exerise of 1. session.(The fat that a symmetri matrix with nonzero eigenvalues is invertiblefollows, e.g., from the eigenvalue deomposition.)
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Computational methods in inverse problemsNuutti Hyvönen, Matti Leinonen and Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiFifth leture, February 2, 2011.
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2.4 Regularization by trunated iterativemethods
90



For simpliity, in the rest of Chapter 2 we will only onsider the asewhen
Ax = yis a system of linear equations, i.e., A ∈ R

m×n, x ∈ R
n and y ∈ R

m.In the literature there are lots of iterative methods for solving this kindof matrix equations. By �iterative� we mean a method that attempts tosolve the problem by �nding suessive approximations for the solution,starting from some initial guess. Typially, omputation of suhiterations involves multipliations by A and its adjoint, but not expliitomputation of inverse operators. (The Gaussian elimination is anexample of the opposite: it is a diret, i.e., non-iterative, method thattries to ome up with a solution in a �nite number of steps.)
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Iterative methods are sometimes the only feasible hoie if the probleminvolves a large number of variables (sometimes of the order of millions),making diret methods prohibitively expensive. Iterations are espeiallypratial if multipliations by A are heap. This is the ase, e.g., when Ais a multi-diagonal matrix originating from a di�erene or elementapproximation for some boundary value problem for an ellipti partialdi�erential operator. (There exist lots of other examples, as well.)Although iterative solvers have not usually been designed for ill-posedequations, they often posses regularizing properties: If the iterations areterminated before �the solution starts to �t to noise�, one often obtainsreasonable solutions for inverse problems.
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2.4.1 Landweber�Fridman iteration
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Banah �xed point iterationLet T : R
n → R

n be a vetor-valued funtion. We say that S ⊂ R
n isan invariant set for T if

T (S) ⊂ S, i.e., T (x) ∈ S for all x ∈ S.Moreover, T is a ontration on an invariant set S if there exists

0 ≤ κ < 1 suh that
‖T (x)− T (y)‖ < κ‖x− y‖ for all x, y ∈ S.Finally, a vetor x ∈ R

n is alled a �xed point of T if
T (x) = x..
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Theorem. Let T : R
n → R

n be a ontration on the losed invariantset S. Then there exists a unique �xed point x ∈ S of T . Furthermore,this �xed point an be found by the following �xed point iteration:

x = lim
k→∞

xk, where xk+1 = T (xk),for any x0 ∈ S.Proof. The proof � although not very ompliated � is omitted.
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A simple example: Consider the funtion T : x 7→ x2 from R to itself.(i) Let S = [0, 1/3]. Clearly, T (S) = [0, 1/9] ⊂ S and

|T (x)− T (y)| = |x2 − y2| = |x+ y||x− y| ≤ 2/3|x− y|.Hene, there is a unique �xed point, whih is given by limx2k

0 = 0for every x0 ∈ S.(ii) If S = (0, 1/3], the �xed point does not anymore lie in S.(iii) If S = [0, 1], T (S) = S, but T is no longer a ontration:

|T (3/4)− T (1/2)| = 5/16 > 1/4 = |3/4− 1/2|.In this ase there are two �xed points: T (0) = 0 and T (1) = 1.(iv) If, e.g., S = [0, 5/6], there is a unique �xed point 0 ∈ S, but itsexistene is not predited by the �xed point theorem sine T is not aontration on S. 96



Landweber�Fridman shemeInstead of the original equation

Ax = y,we will onsider the normal equation
ATAx = ATy.Aording to 3. exerise of 1. session, x ∈ R

n satis�es the normalequation of and only if it minimizes the residual
‖Ax− y‖.Moreover, there exist a unique element of R

n, given by x† := A†y ∈ R
n,that solves the normal equation and is orthogonal to Ker(A).(Bear in mind, however, that the use of the pseudoinverse A† is suspetif the matrix is ill-onditioned, i.e., if λ1/λp ≫ 1, where p = rank(A).)97



We de�ne an a�ne mapping T : R
n → R

n by

T (x) = x+ β(ATy − ATAx), β ∈ R.Notie that any solution of the normal equation is a �xed point of T .We will show that if β is small enough there is only one �xed point of Tin Ker(A)⊥, namely x†, and it an be reahed by the �xed pointiteration if x0 = 0.Theorem. Let 0 < β < 2/λ2
1 be �xed. Then, the �xed point iteration

xk+1 = T (xk), x0 = 0,onverges towards x† as k →∞.
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Proof. Set S = Ker(A)⊥ = Ran(AT). Clearly, T (S) ⊂ S sine

T (x) = x+ AT (βy − βAx) ∈ Ran(AT)for all x ∈ Ran(AT). Thus, S is invariant under T .Reall that A and its transpose an be represented with the help of A'ssingular system as
Ax =

p
∑

j=1

λj(v
T
j x)uj and ATy =

p
∑

j=1

λj(u
T
j y)vj ,where p = rank(A) and λj are the positive singular values of A. Theorthonormal sets of vetors {vj}pj=1 and {uj}pj=1 span S = Ker(A)⊥and Ran(A), respetively. In partiular,

x =

p
∑

j=1

(vT
j x)vj for all x ∈ S.
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Let x, z ∈ S and note that also x− z ∈ S. We have

T (x)− T (z) = (x− z)− βATA(x− z)

=

p
∑

j=1

(vT
j (x− z))vj − β

p
∑

j=1

λ2
j(v

T
j (x− z))vj

=

p
∑

j=1

(1− βλ2
j )(v

T
j (x− z))vj .

As λ1 is the largest of the singular values, it holds by assumption that

−1 < βλ2
j − 1 ≤ βλ2

1 − 1 < 2− 1 = 1, for all j = 1, . . . , p.Hene, we see that

κ := max
j=1,...,p

|βλ2
j − 1| < 1.
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In onsequene,
‖T (x)− T (z)‖2 ≤

p
∑

j=1

(1− βλ2
j )

2(vT
j (x− z))2

≤ κ2

p
∑

j=1

(vT
j (x− z))2 = κ2‖x− z‖2,

whih shows that T is a ontration on S. As S is also a losed invariantset for T , we know that there exists a unique �xed point of T in S.To omplete the proof, we reall that x† = A†y belongs to

S = Ker(A)⊥ and satis�es the normal equation (see exerise 3. ofsession 1.). Furthermore, sine x0 = 0 is in S � it is orthogonal to allvetors �, the �xed point iteration starting from x0 onverges to x†. �
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Regularization properties of Landweber�FridmanFrom now on we will assume that 0 < β < 2/λ2
1.In the third exerise session, it will be shown that the kth iterate of theLandweber�Fridman iteration an be written expliitly:

xk =

p
∑

j=1

1

λj

(
1− (1− βλ2

j )
k
)
(uT

j y)vj , k = 0, 1, . . . . (8)

Sine |1− βλ2
j | < 1 by assumption,

(1− βλ2
j )

k → 0 as k →∞,whih is what one would expet sine
x† =

p
∑

j=1

1

λj
(uT

j y)vj .
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However, while k ∈ N is �nite, the oe�ients of the terms (uT
j y)vjappearing in the series representation (8) satisfy

1

λj

(
1− (1− βλ2

j )
k
)

=
1

λj

(

1−
k∑

l=0

(
k
l

)

(−1)lβlλ2l
j

)

=
1

λj

k∑

l=1

(
k
l

)

(−1)l+1βlλ2l
j

=
k∑

l=1

(
k
l

)

(−1)l+1βlλ2l−1
j ,whih onverges to zero as λj → 0 (for a �xed k).As a onsequene, while k is `small enough', no oe�ient of (uT

j y)vj in(8) is so large that the omponent of the measurement noise in thediretion uj is ampli�ed in an unontrolled manner. (Reall that theorresponding oe�ients for Tikhonov regularization are λj/(λ
2
j + δ).)103



Disrepany priniple for Landweber�FridmanLet the measurement y ∈ R
m be a noisy version of some underlying`exat' data vetor y0 ∈ R

m, and assume that

‖y − y0‖ ≈ ǫ > 0.The Morozov disrepany priniple works for the Landweber�Fridmaniteration in approximately the same way as for the trunated SVD andthe Tikhonov regularization: Choose the smallest k ≥ 0 suh that theresidual satis�es

‖y −Axk‖ ≤ ǫ.
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Suh a stopping rule exists if

ǫ > ‖y − Py‖ = ‖y −A(A†y)‖,where P = AA† (see 1. ses., 2. ex.) is the orthogonal projetion ontothe range of A. Indeed, sine the sequene {xk}∞k=0 onverges to

x† = A†y, for any ǫ > ‖y −Ax†‖ there exists k = kǫ ∈ N suh that

‖xk − x†‖ ≤
1

‖A‖ (ǫ− ‖y −Ax
†‖),and thus by the reverse triangle inequality,

‖y −Axk‖ − ‖y −Ax†‖ ≤ ‖(y −Axk)− (y −Ax†)‖
≤ ‖A‖‖xk − x†‖
≤ ǫ− ‖y − Ax†‖,whih just means that ‖y − Axk‖ ≤ ǫ.105



An example: Heat distribution in a rod (revisited)Reall again the disretized inverse heat ondution problem that wasdisussed during the seond and third letures. Let w be the simulatedheat distribution at T=0.1 with the `wedge funtion' as the initial data,and A the orresponding propagation matrix A=expm(TB). We add againthe same small amount of noise to the measurement:wn = w + 0.001*randn(N-1,1);and use the Morozov disrepany priniple with
ǫ =

√
99 · 0.0012 ≈ 9.95 · 10−3.Beause the largest singular value of the solution operator

ET : L2(0, π)→ L2(0, π) in the orresponding in�nite-dimensional aseis 1, it is reasonable to antiipate that the same is also approximatelytrue for A. Thus, we hoose β = 1 < 2/1 ≈ 2/λ2
1.106



The implementation of the Landweber�Fridman iteration with theMorozov disrepany priniple in Matlab is straightforward. Bear inmind, however, that matrix-matrix produts are far more expensive toompute than matrix-vetor produts. Hene, you should either omputeand store the produt ATA before you start iterating or use parenthesesto avoid omputing this produt during the iteration:flw = flw + beta*(A'*wn - A'*(A*flw));With the partiular realization of the measurement noise, the Morozovdisrepany priniple was satis�ed by the iterate orresponding to

k = 5712. In the following, we visualize the evolution of theLandweber�Fridman iteration for k = 1, 2, 7, 20, 54, 148, 403, 1096, 2980,show the residual as a funtion of k, and plot the solution orrespondingto the disrepany priniple.
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2.4.1 Kazmarz iteration and ART

112



Partition of the original problemLet us ontinue to onsider the matrix equation

Ax = y,where A ∈ R
m×n, x ∈ R

n and y ∈ R
m.Suppose that we an write the system matrix A in the form

A =








A1...
Al







, Aj ∈ R

kj×n, j = 1, . . . l,

where k1 + · · ·+ kl = m and eah submatrie Aj is assumed to have kjlinearly independent row vetors, i.e., rank(Aj) = kj ≤ n. In partiular,

Aj de�nes a surjetive mapping from R
n to R

kj . (Reall that the rankof a matrix equals the number of linearly independent olumns/rows.)113



Similarly, we deompose y ∈ R
m into l subvetors:

y =








y1...
yl







, yj ∈ R

kj , j = 1, . . . , l.

Now, the original equation an be given as the system

Ajx = yj , j = 1, . . . , l.The jth of these matrix problems is omposed of kj ≤ n linearlyindependent linear equations, and thus the orresponding 'solution spae'

Xj = {x ∈ R
n | Ajx = yj}is a n− kj dimensional hyperplane in R

n. (Notie that this hyperplaneis a subspae, i.e., it passes through the origin, if and only if yj = 0.)114



The Kazmarz sequeneAlthough Xj is not in general a subspae, we an de�ne an orthogonalprojetion Pj : R
n → Xj by requiring that

Pjz ∈ Xj and (I − Pj)z ⊥ (w1 − w2)for all z ∈ R
n and w1, w2 ∈ Xj . In other words, Pjz is the point losestto z in Xj . Furthermore, we de�ne the sequential `projetion'

P : R
n → R

n via
P = PlPl−1 . . .P2P1.The Kazmarz sequene {xk}∞k=0 ⊂ R

n is de�ned reursively as

xk+1 = Pxk, x0 = 0.
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Theorem. Assume that X =
⋂l

j=1Xj 6= ∅, i.e., the original equationhas at least one solution. Then the Kazmarz sequene {xk}∞k=0 ⊂ R
nonverges to the minimum norm solution as k goes to in�nity. In otherwords,

lim
k→∞

xk = x†,where x† = A†y satis�es Ax† = y and x† ⊥ Ker(A).Proof. The text book presents the (relatively ompliated) proof in themore general ase where A operates between separable Hilbert spaes.Here, we omit the proof.
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Algebrai reonstrution tehnique (ART)Let us onsider the speial ase where the original problem Ax = y,

A ∈ R
m×n, is partitioned into m subproblems, i.e., linear equations:

Ajx = aT
j x = yj , j = 1, . . . ,m,where aT

j is the jth row of A � with aj ∈ R
n treated as a olumnvetor � and yj ∈ R is just the jth omponent of the vetor y ∈ R

m.Notie that in this ase the ondition that Aj : R
n → R is a surjetionfor every 1 ≤ j ≤ m is equivalent to requiring that A does not have anyempty rows.The Kazmarz iteration orresponding to this setting is alled thealgebrai reonstrution tehnique (ART) � at least, this is what weall ART on this ourse. ART is used extensively in X-ray tomography.

117



Examples of ART iterationsLet us �rst onsider the ase where

A =




1 1

−1 3



 and y =




1

2



 .

In partiular, A is invertible and the orresponding hyperplanes, i.e., linesin R
2, are given by

X1 = {x = (x1, x2)
T ∈ R

2 | x1 + x2 = 1},
X2 = {x = (x1, x2)

T ∈ R
2 | − x1 + 3x2 = 2}.In this ase, the ART algorithm should onverge towards the uniquesolution x = (1/4, 3/4)T. In the following, we visualize eah projetionby Pj , j = 1, 2, not just the sequential projetions by P = P2P1.
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Let us then add one row to A and one omponent to y:

A =







1 1

−1 3

1 0







and y =







1

2

1






,

whih adds the third hyperplane
X3 = {x = (x1, x2)

T ∈ R
2 | x1 = 1}.into play.In this ase, the equation Ax = y does not have a solution. The ARTiteration seems to onverge to a point on X3 depited by an asterisk inthe following �gure � note that this does not mean that nothinghappens within eah iteration step. For omparison, the 'ring' marks theleast squares solution x† = A†y. 120
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Finally, we return to the ase of square matries, but hoose A so thatits rows are somewhat `loser' to being linearly dependent:

A =




0 1

−1 3



 and y =




1

2



 .

One again, A is invertible and the orresponding 'solution hyperplanes'are given by

X1 = {x = (x1, x2)
T ∈ R

2 | x2 = 1},
X2 = {x = (x1, x2)

T ∈ R
2 | − x1 + 3x2 = 2}.The ART algorithm onverges towards the unique solution x = (1, 1)T,but extremely slowly.
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Computation of the projetions PjConsider still the equation Ax = y, A ∈ R
n×m, and assume still thatthere exists a partition

A =








A1...
Al







, Aj ∈ R

kj×n, y =








y1...

yl







, yj ∈ R

kj ,

suh that eah Aj is surjetive, i.e., rank(Aj) = kj ≤ n. As before, let

Xj denote the (non-empty) hyperplane omposed of the solutions to

Ajx = yj , and Pj : R
n → Xj the orthogonal projetion onto suhhyperplane. Furthermore, we de�ne

Qj : R
n → Ker(Aj), j = 1, . . . , l,to be the orthogonal projetion onto the kernel of Aj .124



In the fourth exerise session, it will be shown that

Pjx = z +Qj(x− z)for all x ∈ R
n and any z ∈ Xj . In partiular, this formula is independentof the partiular hoie of z.Lemma. The projetion Pj an be written expliitly as

Pjx = x+AT
j (AjA

T
j )−1(yj −Ajx)for all x ∈ R

n and j = 1, . . . , l.
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Proof. We start by proving that AjA
T
j ∈ R

kj×kj is invertible. Sine

Aj : R
n → R

kj is surjetive, it follows that

Ker(AT
j )⊥ = Ran(Aj) = R

kj .Hene, Ker(AT
j ) = {0}, i.e., AT

j is injetive. This means, in fat, thatalso AjA
T
j is injetive:

AjA
T
j z = 0 ⇒ zTAjA

T
j z = 0 ⇒ ‖AT

j z‖2 = 0 ⇒ z = 0.Due to the fundamental theorem of linear algebra, the injetive squarematrix AjA
T
j is invertible.Fix an arbitrary x ∈ R

n and let us write
Pjx = z +Qj(x− z)with some z ∈ Xj , as suggested before the lemma.
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Sine Qj : R
n → Ker(Aj) is an orthogonal projetion, I −Qj maps R

nonto Ker(Aj)
⊥ (and is, in fat, also an orthogonal projetion). Hene,we have

x− Pjx = (I −Qj)(x− z) ∈ Ker(Aj)
⊥ = Ran(AT

j ).This means that there exist w ∈ R
kj suh that

AT
j w = x− Pjx, (9)and, onsequently,

AjA
T
j w = Ajx−AjPjx = Ajx− yjbeause Pjx ∈ Xj . Solving this equation for w and substituting into (9)results in

AT
j (AjA

T
j )−1(Ajx− yj) = x− Pjx,whih ompletes the proof. �127



Algorithmi implementation of ARTIn the ase of ART, i.e., when the submatries Aj = aT
j , j = 1, . . . ,m,are the rows of the original system matrix A, and yj , j = 1, . . . ,m, arethe omponents of y, the inverse needed above

(AjA
T
j )−1 = (aT

j aj)
−1 = 1/‖aj‖2is just a real number. Thus, the ART algorithm reads asSet k = 0 and x0 = 0;Repeat until the hosen stopping rule is satisfied:

z0 = xk;for j = 1, . . . ,m

zj = zj−1 + (1/‖aj‖2)(yj − aT
j zj−1)aj;end

xk+1 = zm; k ← k + 1;end 128



Disrepany priniple for the Kazmarz iterationAs you probably guess, we let the measurement y ∈ R
m be a noisyversion of some underlying `exat' data vetor y0 ∈ R

m, and assume that

‖y − y0‖ ≈ ǫ > 0.The Morozov disrepany priniple works for the Kazmarz iteration asfollows: Choose the smallest k ≥ 0 suh that the residual satis�es

‖y −Axk‖ ≤ ǫ,if suh k exists.

129



Unlike for the trunated SVD and the Landweber�Fridman iteration, theondition
ǫ > ‖y − Py‖,where P is the projetion onto the range of A, is not su�ient toguarantee the existene of suh a stopping index k without furtherassumptions. As an example, in the seond example of this leture

‖y −Axk‖  0.98 as k →∞,while ‖y − Py‖ ≈ 0.59.However, one an always try to apply the Morozov disrepany prinipleand hope for the best.
130



An example: Heat distribution in a rod (revisited)Let us one again onsider the disretized inverse heat ondutionproblem in an insulated rod. We simulate the data in the exatly sameway as above, add the same amount of noise and use the same value of

ǫ for the Morozov disrepany priniple. The implementation of ARTwith the disrepany priniple in Matlab is straightforward.With the partiular realization of the measurement noise, the Morozovdisrepany priniple was satis�ed by the iterate orresponding to

k = 493. In the following, we visualize the evolution of the ARTiteration for k = 1, 2, 7, 20, 54, 148, 403, show the residual as a funtionof k, and plot the solution orresponding to the disrepany priniple.
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2.4.3 Krylov subspae methods

136



Krylov subspae methodsThe Krylov subspae methods are iterative solvers for (large) matrixequations of the form Ax = y, A ∈ R
n×n. Loosely speaking, suhmethods try to approximate the solution vetor x ∈ R

n as a linearombination of vetors of the type u, Au, A2u et., with some given

u ∈ R
n. If multipliation by A is heap � e.g., if A is sparse �, theKrylov subspae methods are espeially e�ient.On this ourse, we only onsider the most well-known Krylov subspaemethod, the onjugate gradient method. Other methods of this lassinlude, e.g., the generalized minimal residual method (GMRES), andthe bionjugate gradient method (BiCG).
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The regularizing properties of the onjugate gradient method an beanalyzed expliitly; see, e.g., the monographM. Hanke, Conjugate gradient type methods for ill-posed problems,Pitman Researh Notes in Mathematis Series, 327.However, here we ontent ourselves with introduing the basi ideasbehind the onjugate gradient sheme and demonstrating numeriallyhow appliation of an `early stopping rule' provides reasonable solutionsfor inverse problems.
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Assumptions on A and a related inner produtWe assume that the system matrix A ∈ R
n×n is symmetri and positivede�nite, i.e.,

AT = A and uTAu > 0 for u 6= 0.In partiular, this means that the square matrix A is injetive, andonsequently invertible due to the fundamental theorem of linearalgebra. It is easy to see that the inverse A−1 ∈ R
n×n is also symmetriand positive de�nite.We de�ne an A-dependent inner produt and the orresponding norm via

〈u, v〉A = uTAv and ‖u‖A = 〈u, u〉1/2
A .It follows from the assumptions on A that 〈·, ·〉A : R

n × R
n → R reallyis an inner produt on R

n, and onsequently ‖ · ‖A : R
n → R is a norm.139



The error, the residual and a minimization problemLet x∗ = A−1y ∈ R
n be the unique solution of the equation

Ax = yfor a given y ∈ R
n. We de�ne the error and the residual orrespondingto some approximative solution x ∈ R

n by

e = x∗ − x and r = y −Ax = Ae.Let φ : R
n → R be the A-dependent quadrati funtional

φ(x) = ‖e‖2A = eTAe = rTA−1r = ‖r‖2A−1 .Sine ‖ · ‖A is a norm, φ(x) is non-negative and equals zero if and only if

e = 0 ⇐⇒ x = x∗.Hene, minimizing φ is equivalent to solving the original equation.140



Minimizing φ in a given diretionEvaluating φ would require the knowledge of x∗ or, equivalently, that of

A−1; sine our ultimate goal is to approximate the solution x∗iteratively, assuming it known is not a feasible option.Fortunately, if we have some initial guess x0 ∈ R
n and some searhdiretion 0 6= s0 ∈ R

n, we an �nd the minimizer of φ over the line

S0 = {x ∈ R
n | x = x0 + αs0, α ∈ R}without knowing x∗.

141



Lemma. The funtion
α 7→ φ(x0 + αs0), R→ R,attains its minimum at
α = α0 :=

sT0 r0
‖s0‖2A

=
sT0 r0
sT0As0

,where r0 is the residual orresponding to the initial guess:

r0 = y −Ax0.
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Proof. The residual orresponding to x = x0 + αs0 is

r = y − Ax = y −Ax0 − αAs0 = r0 − αAs0.In onsequene,
φ(x) = rTA−1r

= (r0 − αAs0)TA−1(r0 − αAs0)
= α2sT0As0 − 2αsT0 r0 + rT0 A

−1r0,whih, as a funtion of α, is a parabola that opens upwards, beause

sT0As0 > 0. Hene, its minimum is at the unique zero of the derivativewith respet to α, i.e., at α = α0. �

143



About the hoie of the searh diretionsGiven a sequene of (non-zero) searh diretions {sk} ⊂ R
n, we anthus produe a sequene of approximate solutions by �rst hoosing x0and then �nding iteratively the minimizer of φ on the line passingthrough xk in the diretion sk as follows:

xk+1 = xk + αksk, with αk =
sTk rk
sTkAsk

, k = 0, 1, . . . ,where rk is the residual orresponding to the kth iterate, i.e.,

rk = y −Axk.Notie that {φ(xk)} is a dereasing sequene of real numbers beause

φ(xk+1) is always smaller than � or as small as � φ(xk).However, an e�ient hoie of the searh diretions {sk} is a subtleissue. 144



Probably, one of the �rst ideas that omes to mind is to hoose

sk = −∇φ(xk) = 2(y −Axk), k = 0, 1, . . . ,beause it gives the diretion of the steepest desent. However, this doesnot in general provide a sequene {xk} that onverges fast towards theglobal minimizer x∗ = A−1y, as demonstrated by the following example:Let

A =




1 0

0 5



 and y =




0

0



 ,whih means, in partiular, that
φ(x) = φ(x(1), x(2)) = (x(1))2 + 5(x(2))2.The following image shows level ontours of φ and the sequene

{xk}9k=0 starting from x0 = (1, 0.3)T. The atual solution x∗ = (0, 0)Tis marked with an asterisk. 145



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

146



Minimizing φ over a hyperplaneLet {s0, . . . , sk} be a set of linearly independent searh diretion. Next,we onsider �nding the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},where x0 ∈ R
n is the initial guess and Sk = [s0, . . . , sk] ∈ R

n×(k+1).Lemma. The funtion
h 7→ φ(x0 + Skh), R

k+1 → R,attains its minimum at

h = h∗ = (ST
k ASk)−1ST

k r0,where r0 = y −Ax0 is the residual orresponding to the initial guess.
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Proof. Let us �rst prove that ST
k ASk ∈ R

(k+1)×(k+1) is invertible: Dueto the positive de�niteness of A, we have

ST
k ASkz = 0 =⇒ zTST

k ASkz = 0 =⇒ Skz = 0,whih means that z = 0 sine the olumns of Sk are linearlyindependent. Hene, Ker(ST
k ASk) = {0}, i.e., ST

k ASk is injetive, andthus (ST
k ASk)−1 exists by the fundamental theorem of linear algebra.The residual orresponding to x = x0 + Skh satis�es

r = y −A(x0 + Skh) = r0 −ASkh,and thus

φ(x0 + Skh) = (r0 −ASkh)
TA−1(r0 − ASkh)

= hTST
k ASkh− 2rT0 Skh+ rT0 A

−1r0.
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In partiular, the oe�ient matrix ST
k ASk of the quadrati term of

φ(x0 + Skh) in h is positive de�nite:

uT(ST
k ASk)u = (Sku)

TA(Sku) ≥ 0, u ∈ R
k+1,where the equality holds if and only if Sku = 0, i.e., u = 0. Thus, thebasis of quadrati programming tell us that the unique zero of thegradient of φ(x0 + Skh) with respet to h, i.e.,

h∗ = (ST
k ASk)−1ST

k r0,is the unique minimizer of φ(x0 + Skh) over h ∈ R
k+1. �
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A-onjugate searh diretionsSine �nding the minimizer of φ over the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}involves inverting a (k + 1)× (k + 1) matrix, suh an approah is notneessarily very attrative.On the other hand, as demonstrated by the numerial example above,minimizing φ sequentially in the diretions s0, . . . , sk does not, ingeneral, result in as good approximate solution as doing theminimization over the whole hyperplane Sk at one. (Clearly, the �rsttwo searh diretions of the numerial example were linearlyindependent, and thus minimization over the hyperplane S2, i.e., thewhole R
2, would have given the global minimizer x∗ = (0, 0)T.)However, the sequential minimization does produe the minimizer over

Sk if the searh diretions {s0, . . . , sk} are hosen in a lever way.150



We say that non-zero vetors {s0, . . . , sk} ⊂ R
n are A-onjugate if

〈si, sj〉A = sTi Asj = 0for i 6= j. In other words, the vetors {s0, . . . , sk} are A-onjugate ifthey are orthogonal with respet to the inner produt 〈·, ·〉A.The A-onjugay ondition an be expressed neatly with the help of thematrix Sk = [s0, . . . , sk] ∈ R
n×(k+1):

ST
kASk =








sT0...

sTk








[As0, . . . , Ask] = diag(d0, d1 . . . , dk) ∈ R
(k+1)×(k+1),

where dj = sTj Asj > 0, j = 0, . . . , k, due to the positive de�niteness ofthe matrix A.
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The following theorem demonstrates that it is useful to hoose thesearh diretions to be A-onjugate.Theorem. Let x0 ∈ R
n be an initial guess and assume that the vetors

{s0, . . . , sk} ⊂ R
n are non-zero and A-onjugate. Then, the sequentialminimizer of φ over these diretions, i.e., xk+1 ∈ R

n obtained by theiteration
xj+1 = xj + αjsj , with αj =

sTj rj

sTj Asj
, j = 0, . . . , k,is the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}.To put it short,

xk+1 = x0 + Skh∗ = x0 + Sk(ST
k ASk)−1ST

k r0.
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Proof. Let aj = (α0, . . . , αj)
T ∈ R

j+1. With this notation we have

xj = x0 +

j−1
∑

i=0

αisi = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

Moreover the residual orresponding to xj is

rj = y −Axj = (y −Ax0)−ASj−1aj−1 = r0 −ASj−1aj−1.In partiular,

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 + sTj [As0, . . . , Asj−1]aj−1,where the last term vanishes sine sj is A-onjugate to {s0, . . . , sj−1}.
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Hene,
αj =

sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k.On the other hand, sine {s0, . . . , sk} are A-onjugate, we have

(ST
k ASk)−1 =

(
diag(sT0As0, . . . , s

T
kAsk)

)−1

= diag(1/(sT0As0), . . . , 1/(s
T
kAsk)),whih means that

h∗ = (ST
k ASk)−1ST

k r0 = (ST
k ASk)−1








sT0 r0...
sTk r0








=








α0...

αk







.

Consequently, ak = h∗ and

xk+1 = x0 + Skak = x0 + Skh∗. �154
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Summary of the previous letureA Minimization problem: Let A ∈ R
n×n be symmetri and positivede�nite. Instead of solving the original equation Ax = y diretly, weonsider minimizing the funtional

φ(x) = (x∗−x)TA(x∗−x) = eTAe = (y−Ax)TA−1(y−Ax) = rTA−1r,where x∗ = A−1y is the atual solution, and e and r are alled the errorand the residual orresponding to the approximate solution x. Theunique minimizer of this funtional is the solution of the originalproblem, i.e., x∗.
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A sequene of minimizers: Given an initial guess x0 and a set ofnon-zero searh diretions {sj}kj=0 ⊂ R
n, we de�ne the approximatesolution xj+1, j = 1, . . . , k, reursively as the minimizer of thefuntional φ on the line

Sj = {x ∈ R
n | x = xj + αsj , α ∈ R}.This an be done through the iteration

xj+1 = xj + αjsj , with αj =
sTj rj

sTj Asj
, j = 0, . . . , k,where rj = y −Axj is the residual orresponding to xj .
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A-onjugate searh diretions: The non-zero vetors {sj}kj=0 arealled A-onjugate if
〈si, sj〉A = sTi Asj = 0 for i 6= j.If the searh diretions are hosen this leverly, the iterate xk+1 is theminimizer of φ over the whole hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},i.e., over all vetors of the form x = x0 +
∑k

j=0 hjsj , where h0, . . . , hkare real numbers. This minimizer an be given expliitly as

xk+1 = x0 + Skh∗, h∗ = (ST
k ASk)−1ST

k r0,where Sk = [s0, . . . , sk] ∈ R
n×(k+1). In partiular, xn is the globalminimizer, i.e., xn = x∗.

158



−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

159



A useful orollary about the residualsIf the searh diretions are hosen to be A-onjugate, we have also extrainformation about the residuals:Corollary. If the non-zero searh diretions {sj}kj=0 ⊂ R
n are

A-onjugate, then the residual rk+1 = y −Axk+1 satis�es

rk+1 ⊥ span{s0, . . . , sk},where the orthogonality is in the sense of the standard inner produt.Proof. Sine xk+1 = x0 + Skh∗, it holds that
rk+1 = (y − Ax0)−ASkh∗ = r0 −ASkh∗.In onsequene,

[rTk+1s0, . . . , r
T
k+1sk] = rTk+1Sk = rT0 Sk − hT

∗ S
T
k ASk = 0beause hT

∗ = ((ST
k ASk)−1ST

k r0)
T = rT0 Sk(ST

k ASk)−1.160



How to onstrut A-onjugate searh diretions?There are many ways to onstrut a set of A-onjugate searhdiretions. If one hooses to use Krylov subspaes the result is theonjugate gradient algorithm:De�nition: The kth Krylov subspae of A with the initial vetor

r0 = y −Ax0 is de�ned as
Kk = K(A, r0) = span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . .Note, in partiular, that A(Kk) ⊂ Kk+1.Take also note that Kk−1 ⊂ Kk, where the dimension of the latter is atmost k, and it is at most one higher than that of the former. (Forexample, if r0 is an eigenvetor of A, then the vetors spanning Kk aresalar multiples of eah other, whih means that dim(Kk) = 1 for all

k ≥ 1. Fortunately, it turns out that this is not a hindrane.)161



The logi of the onjugate gradient algorithmLet us onstrut a sequene of A-onjugate searh diretions indutively.The leading idea is that, given a set of A-onjugate searh diretion, wean either �nd a new A-onjugate diretion or the previous iterate isalready the global minimizer x∗, i.e., the unique solution of Ax = y.1. Choose an initial guess x0 ∈ R
n.2. If r0 = y −Ax0 = 0, we have found the solution x∗ = x0. Otherwise,set s0 = r0 (, whih is, by the way, the steepest desent diretion).Note, in partiular, that the set of a single searh diretion {s0} istrivially A-onjugate and

K1 = span{s0} = span{r0}.
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3. Suppose that we have non-zero and A-onjugate searh diretions

{sj}k−1
j=0 , k ≥ 1, suh that

Km = span{s0, . . . , sm−1} = span{r0, . . . , rm−1}, m = 1, . . . , k,(10)where rj = y −Axj , j = 0, . . . , k− 1, are the residuals orresponding tothe iterates {xj}k−1
j=0 of the sequential minimization algorithm.If rk = 0, the algorithm has onverged to x∗ = xk. Otherwise, we try tohoose another A-onjugate and non-zero searh diretion sk ∈ R

n sothat (10) remains valid if k is replaed by k + 1.
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Assume thus that rk 6= 0. Sine

rk = y −Axk = y −A(xk−1 + αk−1sk−1) = rk−1 − αk−1Ask−1and rk−1 and sk−1 belong by assumption to Kk, the new residual rkbelongs to Kk+1. Sine rk is orthogonal to {s0, . . . , sk−1}, whih span

Kk and belong to Kk+1, we must have
Kk+1 = span{s0, . . . , sk−1, rk} = span{r0, . . . , rk−1, rk}.Let us try to �nd the new searh diretion sk in the form

sk = rk + βk−1sk−1, βk−1 ∈ R.Note that this kind of vetor belongs to Kk+1 and, furthermore,

Kk+1 = span{s0, . . . , sk−1, rk} = span{s0, . . . , sk−1, sk}.Consequently, all we have to worry about is the A-onjugay ondition:164



We want to hoose βk−1 ∈ R
k so that

sTj Ask = sTj Ark + βk−1s
T
j Ask−1

= (Asj)
Trk + βk−1s

T
j Ask−1 = 0 (11)for j = 0, . . . , k − 1. Beause {s0, . . . , sk−2} ⊂ Kk−1, we have

{As0, . . . , Ask−2} ⊂ Kk = span{s0, . . . , sk−1},and thus the vetors {As0, . . . , Ask−2} are orthogonal to rk. Hene, the

A-onjugay of {s0, . . . , sk−1} yields that only the last of the equations(11) is non-trivial.Solving this equation for βk−1 results in the needed update rule

sk = rk + βk−1sk−1, βk−1 = − sTk−1Ark

sTk−1Ask−1
.

165



Conjugate gradient methodTo sum up, we have arrived at the following algorithmChoose x0.Set k = 0, r0 = y −Ax0, s0 = r0;Repeat until the hosen stopping rule is satisfied:

αk = (sTk rk)/(sTkAsk);
xk+1 = xk + αksk;
rk+1 = rk − αkAsk; % Note: rk+1 = y −Axk − αkAsk

βk = −(sTkArk+1)/(s
T
kAsk);

sk+1 = rk+1 + βksk;
k ← k + 1;end
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However, the algorithm is usually presented in a slightly di�erent form.Assuming that the iteration has not yet onverged at the iterate xk, wededue the following formulae:Sine rk ⊥ sk−1,
sTk rk = (rk + βk−1sk−1)

Trk = ‖rk‖2,resulting in
αk =

‖rk‖2
sTkAsk

.In partiular, sine rk+1 ⊥ span{s0, . . . , sk} = Kk+1 ∋ rk, this meansthat

‖rk+1‖2 = rTk+1(rk − αkAsk) = − ‖rk‖
2

sTkAsk
rTk+1Ask = βk‖rk‖2.
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Solving for βk and plugging the obtained formulae for αk and βk intothe preliminary onjugate gradient algorithm leads to the standard formof the method:Choose x0.Set k = 0, r0 = y −Ax0, s0 = r0;Repeat until the hosen stopping rule is satisfied:

αk = ‖rk‖2/(sTkAsk);
xk+1 = xk + αksk;
rk+1 = rk − αkAsk;
βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βksk;
k ← k + 1;endNB: There is an error in the update formula for xk+1 in the textbook.
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Conjugate gradient method for inverse problemsAording to the above onstrution, if you apply the onjugate gradientmethod to the equation
Ax = y,where A ∈ R

n×n is symmetri and positive de�nite, you obtain the exatsolution � up to rounding errors � in at most n iteration steps, i.e.,

xn = x∗ = A−1y. However, suh extensive iterating is not usuallyneessary: The algorithm typially onverges satisfatorily muh quiker;see, e.g., 2. exerise of the 4. session, where a (pessimisti) onvergenerate is provided.When dealing with ill-posed problems, one should be even more arefuland terminate the iterations well before onvergene, in order to avoid�tting the solution to noise. One should, atually, be extremely autiousbeause the onjugate gradient method often onverges very fast.169



Let us be a bit more preise and onsider a general ill-posed matrixequation
Ax = y,where A ∈ R

m×n and y ∈ R
m are given.In some ases, one may have m = n and, in addition, some priorinformation stating that A is � at least in theory � positive(semi-)de�nite. In suh situation, one an apply the onjugate gradientalgorithm diretly on this original equation.In the general ase, one may still onsider the normal equation

ATAx = ATy,whih orresponds, in essene, to solving the original equation in theleast squares sense.
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Now, the system matrix ATA = (ATA)T ∈ R
n×n is symmetri andpositive semi-de�nite:

uTATAu = ‖Au‖2 > 0 for all u ∈ (Rn \Ker(A)).Hene, the onditions of the onjugate gradient algorithm are almostsatis�ed, and one may look for the solution of the inverse problem byusing the onjugate gradient algorithm with A replaed by ATA and yby ATy. (When implementing the algorithm in Matlab, bear in mindthat matrix-matrix produts are typially far more expensive thanmatrix-vetor produts.)As a stopping ondition, one may try, e.g., the Morozov priniple for theoriginal equation: Terminate the iteration when
‖y −Axk‖ ≤ ǫfor some ǫ > 0, whih measures the amount of noise in y in some sense.171



An example: Heat distribution in a rod (revisited)Let us one again onsider the disretized inverse heat ondutionproblem in an insulated rod. We simulate the data in the exatly sameway as above and add the same amount of noise.The system matrix A = eTB , T = 0.1, is symmetri sine B issymmetri. Moreover, the in�nite-dimensional version of A, i.e., ET , ispositive de�nite, and thus it is not far-fethed to assume that A is, atleast, lose to being positive semi-de�nite. (A symmetri matrix ispositive de�nite if and only if all of its eigenvalues are positive; aordingto Matlab the eigenvalues of A are either positive or extremely lose tozero.) Hene, it seems reasonable to try applying the onjugate gradientmethod diretly to the original equation.
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If we use the same value ǫ =
√

99 · 0.0012 = 9.95 · 10−3 for the Morozovdisrepany priniple as in the previous examples, the onjugate gradientmethod beomes unstable before the stopping rule is satis�ed. However,for the value 1.2 ·
√

99 · 0.0012 the stopping rule is satis�ed after seveniterations.In the following, we visualize the evolution of the onjugate gradientiteration, show the norm of the residual ‖y −Axk‖ as a funtion of k,and plot the solution orresponding to the (�ne-tuned) disrepanypriniple.
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Next, we onsider the exatly same problem, but this time apply theonjugate gradient method to the normal equation. As a stopping rulewe use the Morozov disrepany priniple for the original equation, i.e.,we stop the iteration when
‖y −Axk‖ ≤ ǫ,where we use the `standard' ǫ =
√

99 · 0.0012 = 9.95 · 10−3.For some reason, the use of the normal equation makes the algorithmmore stable: the disrepany priniple for this `original' ǫ is satis�ed afterseven iterations and the solution looks nier than when applying thealgorithm diretly to the original equation. (Bear in mind, however, thatonsidering the normal equation makes the algorithm slower sine morematrix-matrix or matrix-vetor produts need to be omputed.)
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An example: Laplae transformLet f : [0,∞)→ R be some unknown funtion and assume that we haveaess to noisy samples of its Laplae transform

Lf(s) =

∫ ∞

0

e−stf(t) dt, s ≥ 0,at some measurement points sj , j = 1, . . . ,m. The task is toapproximate f using the noisy values {Lf(sj)}mj=1 as data.Observe that for large t the kernel e−st is typially very small, and henethe `tail' of f does not a�et the Laplae transform as muh as itsvalues lose to the origin. In onsequene, reonstruting f is anill-posed inverse problem.
183



DisretizationIn order to ome up with a omputational model, we approximate theintegral of the Laplae transform as

Lf(sj) ≈
∫ T

0

e−sjtf(t) dt ≈
n∑

k=1

wke
−sjtkf(tk), j = 1, . . . ,m,where t1, . . . , tn ∈ [0, T ] are the nodes and w = (w1, . . . , wn)T ∈ R

n theorresponding weights of the hosen quadrature rule. Notie that it isimpliitly assumed that e−stf(t) is `small' for all t that are larger thanthe threshold T > 0.For example, if we deided to use the trapezoid rule on an equidistantmesh in the interval [0, T ], we would hoose h = T/(n− 1) and

w = (h/2, h, h, . . . , h, h, h/2)T and tk = (k − 1)hfor k = 1, . . . , n. 184



The above quadrature rule an be written in the matrix form

y = Ax,where x ∈ R
n and y ∈ R

m are given by
x = (f(t1), . . . , f(tn))T

y = (Lf(s1), . . . ,Lf(sm))T,and the elements of the matrix A ∈ R
m×n are de�ned as

(A)jk = wke
−sjtk , j = 1, . . . ,m, k = 1, . . . , n.
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In the following numerial examples, we hoose m = 91 sampling pointson a logarithmi grid:
log sj = − log 10 + 2

(j − 1)

m− 1
log 10, j = 1, . . . ,m,where log denotes the natural logarithm. Now, the points {log sj}mj=1form a uniform grid in the interval [− log(10), log(10)], and thus

{sj}mj=1 lie in the interval [0.1, 10], with half of the points between 0.1and 1. This re�ets our knowledge that the information in the Laplaetransform is � very loosely speaking � onentrated lose to the origin.We set n = 101 and hoose the nodes {tk}nk=1 and the weights w ∈ R
naording to the Gauss�Legendre quadrature rule in the interval [0, 5].(One ould use something less sophistiated, suh as trapezoid rule inthis same interval, as well.)
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Simulation of dataWe hoose
f(t) =







t3 − 4t2 + 4t, 0 ≤ t < 2,

0, t ≥ 2.In this simple ase, the Laplae transform an be alulated expliitlywith the help of partial integration:
Lf(s) =

4

s2
− 4

s3
(2 + e−2s) +

6

s4
(1− e−2s), s > 0.Consequently, we just ompute the value of Lf(s) at the hosensampling points {sj}mj=1 using this formula, add realizations of anormally distributed random variable with zero mean and standarddeviation 10−3 to eah sample, plug the resulting data into the vetor y,and we are ready to go.
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On inverse rimesThe most obvious form of inverse rime is to use the exatly samenumerial model to simulate the data and to arry out the inversion.Suh a proedure results typially in overly optimisti reonstrutions.Here, this form of inverse rime is avoided beause the data is simulatedusing an analyti formula and the reonstrution proess is based on aquadrature rule. However, if the expliit form of Lf was not known, weould operate as follows:
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1. Choose two sets of node and sampling points {s̃j}m0

j=1 and {t̃k}n0

k=1,and {sj}mj=1 and {tk}nk=1.2. Use the �rst sets of points, {s̃j}m0

j=1 and {t̃k}n0

k=1, and theorresponding `quadrature matrix' A = A0 to ompute Lf at thepoints {s̃j}m0

j=1.3. Use interpolation to approximate the value of Lf at the (typiallysparser) set of sampling points {sj}mj=1, and add noise. (Seeinterp1 and interp2 in Matlab.)4. Test your inversion method by using the hereby obtained noisyversions of {Lf(sj)}mj=1 as data and the `quadrature matrix'orresponding to the sets of points {sj}mj=1 and {tk}nk=1 as thesystem matrix A.Notie that in `real life' these kinds of problems do not our beauseyou do not simulate the data yourself.189



Numerial experimentsIn the following, we will apply the onsidered inversion methods to theabove introdued disretized �inverse Laplae transform problem�:

Ax = y.If not stated otherwise, we utilize the Morozov disrepany priniple with

ǫ = 10−3
√
m ≈ 9.5 · 10−3as the stopping rule, i.e., we terminate the iterations, or pik a spetralut-o� index, or hoose a regularization parameter so that theapproximate solution x̃ satis�es

‖y −Ax̃‖ ≃ ǫ.For the exat implementation of the Morozov stopping riterion fordi�erent algorithms, see the material of the previous letures.190



Target funtion and the nodes
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

191



Laplae transform and the noisy measurements
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Trunated singular value deompositionThe singular value deomposition of A is

A = UΛV T,where Λ ∈ R
m×n has the (non-negative) singular values on its diagonal,and the olumns of V ∈ R

n×n and U ∈ R
m×m are omposed of the(extended) orthonormal basis {vj}nj=1 and {uj}mj=1, respetively.The trunated SVD solution for 1 ≤ k ≤ rank(A) is given by

xk = V Λ†
kU

Tywhere Λ†
k ∈ R

n×m has the elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on itsdiagonal. (The singular values of our A are plotted on the next slide.)In the following, we show the evolution of xk as a funtion of k, presentthe Morozov disrepany priniple solution and, for omparison, presentthe trunated SVD solution for no noise and k = 21 = rank(A)− 1.193
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Trunated SVD solutions for k = 1, . . . , 5
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Morozov disrepany solution (k = 5)
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Trunated SVD solutions for k = 5, . . . , 8
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Trunated SVD solutions for k = 21 and no noise
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Tikhonov regularized solutionThe Tikhonov regularized solution xδ ∈ R
n is the unique minimizer ofthe Tikhonov funtional

‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expliitly by the formula
xδ = (ATA+ δI)−1ATy. (12)If one replaes x in the penalty term of the Tikhonov funtional by Lx,for some L ∈ R

l×n, then the identity operator in (335) is replaed by

LTL � at least formally.In the following, we �rst use traditional Tikhonov regularization, andthen plug Lx in the penalty term, with L ∈ R
n×n being a di�erenematrix that approximates the seond spatial derivative on theinterval [0, 5]. 199



Traditional Tikhonov with δ = δMor ≈ 3.6 · 10−5 (solid),

δ = 103δMor (slashed) and δ = 10−3δMor (dotted)
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Smoothness Tikhonov with δMor ≈ 3.8 · 10−10 (solid),

δ = 103δMor (slashed) and δ = 10−3δMor (dotted)
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Landweber�Fridman iterationThe Landweber�Fridman iteration produes a sequene of approximatesolutions {xk}∞k=0 aording to the reursion rule

xk+1 = T (xk), x0 = 0,where
T (x) = x+ β(ATy − ATAx), β ∈ R.In order to ahieve onvergene, the free parameter β should be hosenfrom the interval (0, 2/λ2

1), where λ1 is the largest singular value of A,i.e., the matrix norm of A. The larger the value of β in this interval, thefaster the onvergene. Here, ‖A‖ ≈ 2.05 and we hoose β = 0.45.In the following, we visualize the evolution of the Landweber�Fridmansequene and show the solution orresponding to the Morozovdisrepany priniple. (Note that the onvergene is really slow; there isno real possibility for �tting the solution to noise.)202



Residual ‖y −Axk‖ as a funtion of k
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Approximate solutions xk, k = 1, 101, 201, . . .
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Morozov disrepany solution (k = 12 861)
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Kazmarz iteration (ART)The most basi form of Kazmarz iteration is to take zero as the initialguess and then iterate by projeting reursively onto the hyperplanesde�ned by the rows of the onsidered matrix equation. If aT
j ∈ R

1×ndenotes the jth row of the matrix A, then this algorithm is as follows:Set k = 0 and x0 = 0;Repeat until the hosen stopping rule is satisfied:

z0 = xk;for j = 1, . . . ,m

zj = zj−1 + (1/‖aj‖2)(yj − aT
j zj−1)aj;end

xk+1 = zm; k ← k + 1;endIn the onsidered ase, ART does not seem to onverge for theoriginal ǫ, and thus we use the disrepany priniple with 1.2ǫ here.206



Residual ‖y −Axk‖ as a funtion of k
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Approximate solutions xk, k = 1, . . . , 790
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Morozov disrepany solution (k = 790)
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Conjugate gradient methodWith onjugate gradient method one is fored to onsider the normalequation
ATAx = ATy.In this ase, the algorithm an be written, e.g., as follows (here x0 = 0):Choose x0. Set k = 0, r0 = ATy −AT(Ax0), s0 = r0;Repeat until the hosen stopping rule is satisfied:

zk = AT(Ask);
αk = ‖rk‖2/(sTk zk);
xk+1 = xk + αksk;
rk+1 = rk − αkzk;
βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βksk;
k ← k + 1;end 210



Residual ‖y −Axk‖ as a funtion of k
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Approximate solutions xk, k = 1, . . . , 5
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Morozov disrepany solution (k = 5)
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Approximate solutions xk, k = 5, . . . , 17
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Computational methods in inverse problems, part IIThe seond part of the ourse onentrates on the Bayesian approah toinverse problems.The letures are mainly based on the books:

• �J. Kaipio and E. Somersalo, Statistial and Computational InverseProblems, Springer, 2005� (parts of Chapter 3),

• �D. Calvetti and E. Somersalo, Introdution to Bayesian Sienti�Computing. Ten Letures on Subjetive Computing, Springer, 2007�.
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Statistial inversionIn the statistial approah to inverse problems, the leading idea is toreast the inverse problem in the form of statistial quest for information.

• Quantities are either diretly observable or unobservable.

• Some of the unobservable quantities are of primary interest, othersmay be onsidered to be of seondary interest.

• Quantities depend on eah other through models.

• The objetive of statistial inversion is to extrat information on theunknown quantities of interest based on all available knowledgeabout the measurements, models between the parameters, andinformation that is available prior to the measurement.
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The statistial approah is based on the following priniples:1. All variables are modelled as random variables.2. The randomness desribes our degree of (or lak of) information ontheir realizations.3. The information onerning the values of the random variables isoded in probability distributions.4. The solution of the inverse problem is the posterior probabilitydistribution of the quantities of interest (given the measurement).
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A lassial regularization method typially produes a single estimate,using often a more or less ad ho removal of the ill-posedness of theproblem.In the statistial framework, the solution is a probability distribution thatontains all information on the possible values of the variable of interest.This distribution an be used to obtain di�erent estimates and toevaluate their reliability, e.g., single estimates and redibility intervals.The statistial approah removes the ill-posedness by onsidering awell-posed extension of the inverse problem in the spae of probabilitydensities. When onstruting the well-posed extension, the prior beliefsare more expliitly stated than in traditional regularization.
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Subjetive probabilityExample: Tossing a oin.Assume that the odds of getting heads or tails are equal, i.e.,

P (heads) = P (tails) =
1

2
.Suh an assumption is generally aepted and an be veri�ed empirially(empirial probability). This example re�ets the frequentist view, whereprobability an be seen as the relative frequeny of ourrene in a set ofrepeated experiments.
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In onnetion to Bayesian approah, one sometimes talks aboutsubjetive probabilities. The inferene proess ommonly inorporatessubjetive omponents that re�et the beliefs of, e.g., the person doingthe inferene (e.g., in the form of prior beliefs about the behaviour of theunknown).Examples:What is the probability of rain tomorrow?What is the probability that Finland will win a gold medal in the nextOlympi games?
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On random variables and probabilitydensities
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Probabilities and events (very informal)Let Ω ontain all possible events, and onsider a subset E ⊂ Ω. For theprobability P (E) of an event E, we require

0 ≤ P (E) ≤ 1.Furthermore, it is assumed that
P (Ω) = 1 and P (∅) = 0.Additivity: If A ∩B = ∅ for A,B ⊂ Ω, then
P (A ∪B) = P (A) + P (B).Two events A and B are alled independent, if
P (A ∩B) = P (A)P (B).223



The onditional probability of A on B is the probability that A happensprovided that B happens,
P (A |B) =

P (A ∩B)

P (B)
.

If A and B are mutually independent,
P (A |B) = P (A), P (B |A) = P (B).
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Real valued random variables (still informal)We denote random variables by apital letters and their realizations withlower ase letters. Let X : Ω→ R be a real valued random variable anddenote its probability density by π(x) = πX(x) ≥ 0.The probability of the event x ∈ B, B ⊂ R is obtained throughintegration

P{X(ω) ∈ B} = P (X−1(B)) =

∫

B

π(x)dx.In partiular,

P{X(ω) ∈ R} = P (Ω) =

∫ ∞

−∞
π(x)dx = 1.
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The expetation is the enter of mass of the probability density

E(X) =

∫

R

xπ(x)dx =: x̄.The variane is the expetation of the squared deviation from theexpetation
var(X) = σ2

X = E{(X − x̄)2} =

∫

R

(x− x̄)2π(x)dx.The joint probability density π(x, y) = πX,Y (x, y) of two randomvariables X and Y is
P{X ∈ A, Y ∈ B} =

∫∫

A×B

π(x, y)dxdy.The random variables X and Y are independent if
π(x, y) = π(x)π(y).226



The ovariane of X and Y is

cov(X,Y ) = E{(X − x̄)(Y − ȳ)}.Note that
cov(X,Y ) = E{XY } − E{X}E{Y }.The orrelation oe�ient of X and Y is

corr(X,Y ) =
cov(X,Y )

σXσY
, σX =

√

var(X), σY =
√

var(Y ),or, equivalently, with the help of normalized random variables,

corr(X,Y ) = E{X̃Ỹ }, X̃ =
X − x̄
σX

, Ỹ =
Y − ȳ
σY

.Random variables are unorrelated if their ovariane (or orrelationoe�ient) vanishes,

cov(X,Y ) = 0.227



If X and Y are independent, they are unorrelated, sine

E{(X − x̄)(Y − ȳ)} = E{X − x̄}E{Y − ȳ} = 0.On the other hand, unorrelated random variables are not neessarilyindependent.Given two random variables X and Y with joint probability density

π(x, y), the marginal density of X when Y may take any value, is

π(x) =

∫

R

π(x, y)dy.Analogously, the marginal density of Y is
π(y) =

∫

R

π(x, y)dx.
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The onditional probability density of X given Y is the probabilitydensity of X assuming that Y = y:

π(x | y) =
π(x, y)

π(y)
if π(y) 6= 0.Note that by the symmetry of the roles of X and Y , we have

π(x, y) = π(x | y)π(y) = π(y |x)π(x),whih leads to an important identity
π(x | y) =

π(y |x)π(x)

π(y)
,known as the Bayes formula.
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The onditional expetation or the onditional mean is the expetationof X given that Y = y:
E{X | y} =

∫

R

xπ(x | y)dx.The expetation of X an be omputed also via its onditionalexpetation:
E{X} =

∫

xπ(x)dx =

∫

x

(∫

π(x, y)dy

)

dx

=

∫

x

(∫

π(x | y)π(y)dy

)

dx

=

∫ (∫

xπ(x | y)dx
)

π(y)dy

=

∫

E{X | y}π(y)dy.
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Multivariate random variablesA multivariate random variable is a random variable

X =








X1...

Xn







,

where eah omponent Xi is a real salar valued random variable.The probability density of X is the joint probability density

πX(x) = π(x) = π(x1, . . . , xn) of its omponents.The orresponding expetation is
x̄ =

∫

Rn

xπ(x)dx ∈ R
n,
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or, omponentwise,
x̄i =

∫

Rn

xiπ(x)dx ∈ R, 1 ≤ i ≤ n.

The ovariane matrix is de�ned as
cov(X) =

∫

Rn

(x− x̄)(x− x̄)Tπ(x)dx ∈ R
n×n,or, omponentwise,

cov(X)ij =

∫

Rn

(xi − x̄i)(xj − x̄j)
Tπ(x)dx ∈ R, 1 ≤ i, j ≤ n.The ovariane matrix is symmetri and positive semi-de�nite.
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The symmetry is impliit in the de�nition of the ovariane matrix,whereas the positive semi-de�niteness follows by writing for v ∈ R
n that

vTcov(X)v =

∫

Rn

[vT(x− x̄)][(x− x̄)Tv]π(x)dx

=

∫

Rn

(vT(x− x̄))2π(x)dx ≥ 0.Note that the above expression measures the variane of X in thediretion v.The diagonal entries of the ovariane matrix are the varianes of theindividual omponents of X . Indeed, let us denote by x′i ∈ R
n−1 thevetor x with the ith omponent deleted, i.e.,

x′i = [x1, x2, . . . , xi−1, xi+1, . . . , xn]T.
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Then, we have
cov(X)ii =

∫

Rn

(xi − x̄i)
2π(x)dx

=

∫

R

(xi − x̄i)
2

(∫

Rn−1

π(xi, x
′
i)dx

′
i

)

dxi

=

∫

R

(xi − x̄i)
2π(xi)dxi

= var(Xi).The marginal and onditional probabilities for multivariate randomvariables are de�ned by the same formulas as for the univariate randomvariables.
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Example: Random variables waiting for the trainAssume that every day, exept on Sundays, a train for your destinationleaves every S minutes from the station. On Sundays, the intervalbetween trains is 2S minutes. You arrive at the station with noinformation about the timetable of the trains (or of the day!!). What isyour expeted waiting time?De�ne a random variable, T = waiting time, whose distribution onworking days is
T ∼ π(t |working day) =

1

S
χS(t), χS(t) =







1, 0 ≤ t < S,

0, otherwise.On Sundays, the distribution of T is
T ∼ π(t | Sunday) =

1

2S
χ2S(t).
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On a working day, the expeted waiting time is

E{T |working day} =

∫

tπ(t |working day)dt =
1

S

∫ S

0

tdt =
S

2
.On Sundays, the expeted waiting time is two times as long.If you have no idea whih day of the week it is, you an give equalprobability to eah day. Thus,

π(working day) =
6

7
, π(Sunday) =

1

7
.To get the expeted waiting time regardless of the day of the week,marginalize over the days of the week:

E{T} = E{T |working day}π(working day) +E{T | Sunday}π(Sunday)

=
3S

7
+
S

7
=

4S

7
.
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Example: Poisson distributionA weak light soure emits photons that are ounted with a CCD(Charged Coupled Devie). The ounting proess N(t),

N(t) = number of partiles observed in [0, t] ∈ Nis an integer-valued random variable.Under some assumptions, it an be shown that N is a Poisson proess:

P{N(t) = n} =
(λt)n

n!
e−λt, λ > 0.We now �x t = T = the reording time, de�ne a random variable

N = N(T ), and let θ = λT . We write
N ∼ Poisson(θ).
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We want to alulate the expetation and variane of this Poissonrandom variable. Sine the disrete probability density is

π(n) = P{N = n} =
θn

n!
e−θ, θ > 0,and our random variable takes on disrete values, in the de�nition of theexpetation we have an in�nite sum instead of an integral (a ountablenumber of probability masses), that is
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E{N} =
∞∑

n=0

nπ(n) = e−θ
∞∑

n=0

n
θn

n!

= e−θ
∞∑

n=1

θn

(n− 1)!
= e−θ

∞∑

n=0

θn+1

n!

= θe−θ
∞∑

n=0

θn

n!
︸ ︷︷ ︸

eθ

= θ.
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We alulate the variane of a Poisson random variable in a similar way,writing �rst
var(N) = E{(N − θ)2} = E{N2} − 2θE{N}

︸ ︷︷ ︸

=θ

+θ2

= E{N2} − θ2

=
∞∑

n=0

n2π(n)− θ2.

Substituting the expression of π(n), we thus get
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var(N) = e−θ
∞∑

n=0

n2 θ
n

n!
− θ2 = e−θ

∞∑

n=1

n
θn

(n− 1)!
− θ2

= e−θ
∞∑

n=0

(n+ 1)
θn+1

n!
− θ2

= θe−θ
∞∑

n=0

n
θn

n!
+ θe−θ

∞∑

n=0

θn

n!
− θ2

= θe−θ
(
(θ + 1)eθ

)
− θ2

= θ,that is, the mean and the variane oinide.
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Normal distributionsA random variable X ∈ R is normally distributed, or Gaussian, i.e.,

X ∼ N (x0, σ
2),if

P{X ≤ t} =
1√

2πσ2

∫ t

−∞
exp

(

− 1

2σ2
(x− x0)

2

)

dx.For X ∼ N (x0, σ
2), it holds that

E{X} = x0, var(X) = σ2.As a generalization, X ∈ R
n is Gaussian if its probability density is

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

,where x0 ∈ R
n, and Γ ∈ R

n×n is symmetri and positive de�nite.242



Gaussian random variables are widely used in statistis. They appearnaturally when marosopi measurements are averages of individualmirosopi random e�ets.Examples: pressure and temperature.The Central Limit Theorem sheds light on this:Central Limit Theorem: Assume that real valued random variables

X1, X2, . . . are independent and identially distributed, eah withexpetation µ and variane σ2. Then the distribution of

Zn =
1

σ
√
n

(X1 +X2 + . . .+Xn − nµ)onverges to the distribution of a standard normal random variable

lim
n→∞

P{Zn ≤ x} =
1√
2π

∫ x

−∞
et2/2dt.
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Another interpretation of the Central Limit Theorem: If

Yn =
1

n

n∑

j=1

Xj ,

then for large n a good approximation for the probability distribution of

Y is

Y ∼ N (µ,
σ2

n
).
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Example: Poisson distribution (revisited)One impliation of the Central Limit Theorem is that the Poissondistribution an be approximated with a Gaussian distribution if theexpetation θ is large.Intuitive reasoning based on the CCD amera: Assume for simpliitythat the expetation θ is a positive integer. The total photon ount anthen be viewed as a sum of sub-ounts on θ ∈ N smaller ounter units ofequal size. These sub-ounts an in turn be viewed as mutuallyindependent Poisson distributed random variables with expetation (andvariane) 1. Now, it follows from the Central Limit Theorem that as θinreases, the sum of the sub-ounts approahes a normally distributedvariable with mean and variane θ.
245



Let us test this hypothesis numerially. We plot the Poisson probabilitydistribution
πPoisson(n | θ) =

θn

n!
e−θas a funtion of n ∈ N, and ompare it to the Gaussian approximation

πGaussian(x | θ, θ) =
1√
2πθ

exp

(

− 1

2θ
(x− θ)2

)

as a funtion of x ∈ R+, for inreasing values of θ > 0.
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Inverse problems and Bayes' formula
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Classial setup for inverse problems:

y = f(x, e),where

• y ∈ R
m is the measured quantity,

• x ∈ R
n is the quantity we seek to get information about,

• e ∈ R
k ontains the poorly known parameters and noise, and

• f : R
n × R

k → R
m is the model.

250



In the statistial setup, all parameters are viewed as random variables,and the lassial model is replaed by

Y = f(X,E).Notie that the probability distributions of the three random variables

X,Y and E depend on eah other.Nomenlature:
Y is alled the measurement, and its realization yobs the data.

X is the unobservable variable of primary interest and alled theunknown.The other variables E that are neither observable nor of primary interestare alled parameters or noise.
251



Prior densityEven before performing the measurement, we typially have someknowledge about the variable X . This information is oded in aprobability density x 7→ πpr(x) alled the prior density.Likelihood funtionThe onditional probability density of Y in ase we know the value ofthe unknown, i.e., X = x, is alled the likelihood funtion:

π(y |x) =
π(x, y)

πpr(x)
, if πpr(x) 6= 0.
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Posterior densityGiven the measurement data Y = yobs, the onditional probabilitydensity
π(x | yobs) =

π(x, yobs)

π(yobs)
, if π(yobs) =

∫

Rn

π(x, yobs)dx 6= 0,is alled the posterior density of X .The posterior density expresses what we know about X after realizingthe observation Y = yobs.
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Inverse problem in the Bayesian frameworkGiven the data Y = yobs, �nd the onditional probability density

π(x | yobs) of the variable X .
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Bayes theorem of inverse problemsAssume that the random variable X ∈ R
n has a known prior probabilitydensity πpr(x) and the data onsist of the observed value yobs of anobservable random variable Y ∈ R

m suh that π(yobs) > 0. Then, theposterior probability density of X , given the data yobs, is

πpost(x) = π(x | yobs) =
πpr(x)π(yobs |x)

π(yobs)
.In pratie, the marginal density π(yobs) plays a role of a normingonstant and is often not important.
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Solving an inverse problem in the Bayesian framework1. Based on all available prior information on the unknown X , �nd aprior probability density πpr that re�ets this information as well aspossible.2. Find the likelihood funtion π(y |x) that desribes the interrelationbetween the observation and the unknown.3. Develop methods to explore the posterior probability density.
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Estimators
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Maximum a posteriori estimate (MAP)

xMAP = arg max
x∈R

n
π(x | y)

Existene or uniqueness is not guaranteed.Finding the MAP estimate requires solution of an optimization problem,using, e.g, iterative gradient-based methods.Conditional mean (CM) estimate is de�ned as
xCM = E{x | y} =

∫

Rn

xπ(x | y)dxprovided that the integral onverges.Requires solving an integration problem. In high-dimensional spaes, thismay require speial tehniques (sampling).
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Maximum likelihood (ML) estimate

xML = arg max
x∈R

n
π(y |x)

Answers the question: Whih value of the unknown is most likely toprodue the measured data?The ML estimate is a non-Bayesian estimate, and in the ase of ill-posedinverse problems, often not useful. Loosely speaking, it orresponds tosolving a lassial inverse problem without regularization.
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Conditional ovariane is a `spread estimator':

cov(x | y) =

∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx ∈ R
n×n

Requires solving an integration problem.Bayesian redibility setGiven p, 0 < p < 100, the redibility set Dp of p% is de�ned throughthe onditions
∫

Dp

π(x | y)dx =
p

100
, π(x | y)

∣
∣
x∈∂Dp

= constant,and π(x | y) ≥ π(z | y) for all x ∈ Dp and z /∈ Dp. The boundary of Dpis an equiprobability hypersurfae enlosing p% of the mass of theposterior distribution. (Notie that Dp is not neessarily well de�ned.)
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For a single omponent, one an look at the symmetri interval of agiven redibility: The onditional marginal density of the kth omponent

Xk of X is obtained as
π(xk | y) =

∫

Rn−1

π(x1, . . . , xn | y)dx1 · · · dxk−1dxk+1 · · · dxn.The end points a and b, a < b, of the redibility interval Ik(p) ⊂ R witha given p, 0 < p < 100, are determined from the onditions

∫ a

−∞
π(xk | y)dxk =

∫ ∞

b

π(xk | y)dxk =
1

2
− p

200
.(Unfortunately, these onditions do not always de�ne Ik(p) uniquely.)
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An Example: xMAP and xCM estimatesIn this example, we ompare the xMAP and xCM estimates in a simpleone-dimensional ase. Let X ∈ R and assume that the posterior density

πpost(x) of X is given by
πpost(x) =

α

σ0
φ

(
x

σ0

)

+
1− α
σ1

φ

(
x− 1

σ1

)

,where 0 < α < 1, σ0, σ1 > 0, and ψ is the standard Gaussian density,

φ(x) =
1√
2π
e−x2/2.
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In this ase, we have
xCM = 1− α,and for small σ0 and σ1 it is a good estimate that

xMAP ≈







0 if α/σ0 & (1− α)/σ1,

1 if α/σ0 . (1− α)/σ1.We investigate two di�erent hoies of the parameters α, σ0, σ1, namelya) α = 0.5, σ0 = 0.08 and σ1 = 0.04,b) α = 0.01, σ0 = 0.001 and σ1 = 0.1.Note that in ase b), α = σ0/σ1, whih means that α/σ0 > (1− α)/σ1,and thus xMAP ≈ 0 should be the valid ase. (You an easily verify thisfat numerially.)
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Let us also onsider the posterior variane

σ2 =

∫ ∞

−∞
(x− xCM)2πpost(x)dx =

∫ ∞

−∞
x2πpost(x)dx− x2

CM,whih an be alulated analytially in our simple setting:

σ2 = ασ2
0 + (1− α)(σ2

1 + 1)− (1− α)2.In the following images, we have visualized the intervals of length 2σ,i.e., of length two times the standard deviation, entered at xCM forboth sets of parameters.Notie that when the onditional mean gives a poor estimate, this isre�eted as a larger variane.
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Constrution of the likelihood funtion
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The likelihood funtion answers the question: If we knew theunknown x, how would the measurements be distributed?What makes the data deviate from the predited value given by ourobservation model?Some ommon soures:1. measurement noise in the data,2. inompleteness of the observation model (e.g., disretization errors,the redued nature of the model as ompared to the "reality").Commonly used tehniques in onstrution of the likelihood funtion(and priors) inlude onditioning (inspet one variable at the time) andmarginalization (eliminate variables of seondary interest).
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Additive noiseVery often, the noise is modelled as additive and independent of X . Thismeans that the stohasti model is

Y = f(X) +E.Let us assume that the probability distribution of the noise is known:

P{E ∈ B} =

∫

B

πnoise(e)de, B ∈ R
m.

Beause X and E are mutually independent, �xing X = x does not alterthe probability distribution of E. Hene, Y onditioned on X = x isdistributed as E shifted by the onstant f(x):
π(y |x) = πnoise(y − f(x)).
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If the prior probability density of X is πpr, we thus obtain from theBayes formula that
π(x | y) ∝ πpr(x)πnoise(y − f(x)).If the unknown X and the noise E are not mutually independent, weneed to know the onditional density of the noise

P{E ∈ B |X = x} =

∫

B

πnoise(e |x)de.Then, we may write

π(y |x) =

∫

Rm

π(y, e |x)de =

∫

Rm

π(y |x, e)πnoise(e |x)de.
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If both X = x and E = e are �xed, Y = f(x) + e, and hene

π(y |x, e) = δ(y − f(x)− e).Substituting π(y |x, e) into the last formula of the preeding slide thusyields

π(y |x) = πnoise(y − f(x) |x),and one again from the Bayes formula we get that
π(x | y) ∝ πpr(x)πnoise(y − f(x) |x).
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Example: Additive independent noiseA simple low-dimensional example: a linear model

Y = AX +E,where X ∈ R
2 and Y,E ∈ R

3 are random variables, and

A =







1 −1

1 −2

2 1







is deterministi. Assume that E has mutually independent normallydistributed omponents with zero mean and variane σ2 = 0.09, i.e.,

πnoise(e) ∝ exp

(

− 1

2σ2
‖e‖2

)

.
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Our only prior information is that

P{|Xj| > 2} = 0, j = 1, 2,whih we write in the form of a prior density via

πpr(x) =
χQ(x)

16
,where χQ is the harateristi funtion of the square [−2, 2]× [−2, 2].The posterior density is then

π(x | y) ∝ χQ(x) exp

(

− 1

2σ2
‖y −Ax‖2

)

.

Suppose that the true value of X is x0 = [1, 1]T. We simulate the datathrough y = Ax0 + e, where e is drawn from πnoise.The following �gure illustrates the posterior density with six di�erentrealizations of E. Note that in this ase the prior hardly plays any role.273
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Constrution of the likelihood funtion(ontinued)
276



General noise modelAssume that we have an observation model of the type Y = f(X,E),where X ∈ R
n is the unknown, Y ∈ R

m is the measurement and

E ∈ R
k is the noise/parameter vetor. Sine �xing X and E determinesthe value of Y , we may write

π(y |x, e) = δ(y − f(x, e)).In onsequene,

π(y |x) =

∫

Rk

π(y, e |x)de =

∫

Rk

δ(y − f(x, e))πnoise(e |x)de.
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Change of variablesConsider two random variables X ∈ R
n and Y ∈ R

n that are related viathe formula
Y = f(X),where f is ontinuously di�erentiable and injetive (these onditions anbe relaxed). Suppose we know the probability density of Y , namely πY .Then, for a Borel set B ⊂ R

n, it holds that
P{X ∈ B} = P{Y ∈ f(B)} =

∫

f(B)

πY (y)dy

=

∫

B

πY (f(x))|detDf(x)|dxwhere Df(x) ∈ R
n×n is the di�erential or the Jaobian matrix of f . Asa onsequene,

πX(x) = πY (f(x))| detDf(x)|.278



Example: multipliative noiseConsider an ampli�er that takes in a signal f(t) > 0 and sends it outmultiplied by a onstant fator α > 1. The ideal model for the output isthus
g(t) = αf(t), 0 ≤ t ≤ T.Suppose that the ampli�ation fator is not a onstant but �utuatesslightly around a mean value α0 > 0 as a funtion of time. In order towrite a likelihood model for the output, we �rst disretize the signal:

xj = f(tj), yj = g(tj), 0 = t1 < t2 < · · · < tn = T.Let the ampli�ation at t = tj be aj , i.e.,
yj = ajxj , 1 ≤ j ≤ n,and introdue the stohasti extension:
Yj = AjXj , 1 ≤ j ≤ n.279



In vetor notation, this reads

Y = A.X,with the dot denoting omponentwise multipliation of the vetors

A,X ∈ R
n; we also use a similar notation for omponentwise division.Assume that A is independent of X and has the probability density

A ∼ πnoise(a).To �nd the likelihood density of Y , onditioned on X = x suh that

xj > 0 for all j = 1, . . . n, we write
Aj =

Yj

xj
, 1 ≤ j ≤ n.Thus, we obtain by the hange of variables formula that

π(y |x) =
1

x1x2 · · ·xn
πnoise

(y.

x

)

.
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As an example, assume that the omponents of A ∈ R
n are mutuallyindependent and log-normally distributed:

Wi := logAi ∼ N (w0, σ
2), w0 = logα0.To �nd an expliit formula for the density of A, we note that if

w = log a, where the logarithm is applied omponentwise, we have

dw =
1

a1a2 · · · an
da for a1, . . . , an > 0.Thus, the probability density of A vanishes if any of the omponents of

a is zero or negative, and otherwise it holds that
πnoise(a) =

1

a1a2 · · ·an
exp

(

− 1

2σ2
‖log(a/α0)‖2

)

.
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By substituting this formula in
π(y |x) =

1

x1x2 · · ·xn
πnoise

(y.

x

)

,we �nd that
π(y |x) ∝ 1

y1y2 · · · yn
exp

(

− 1

2σ2

∥
∥
∥
∥
log

(
y.

α0x

)∥
∥
∥
∥

2
)

.

for y ∈ R
n suh that yj > 0 for all j = 1, . . . , n, and zero for other

y ∈ R
n. (Reall that it was assumed to begin with that the omponentsof x are positive.)
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Inompletely known forward modelConsider having a noisy measurement with an inompletely knownforward model: The deterministi model with additive noise is

y = A(v)x+ e, y, e ∈ R
m, x ∈ R

n and A(v) ∈ R
m×n, where A(v)depends on a parameter vetor v ∈ R

k.The orresponding stohasti extension is
Y = A(V )X +E.Assume that E, X and V are mutually independent. How to onstrutthe likelihood model π(y |x), assuming that the noise is distributedaording to πnoise and the parameter aording to πparam?
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To begin with, �x X = x and V = v in order to get the onditionaldensity of Y :
π(y |x, v) = πnoise(y −A(v)x).Subsequently, we marginalize with respet to the parameter V whih isof seondary interest:

π(y |x) =

∫

Rk

π(y, v |x)dv =

∫

Rk

π(y |x, v)πparam(v)dv

=

∫

Rk

πnoise(y −A(v)x)πparam(v)dv.
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On sampling
285



Before moving on to onstrution of priors, we touh the subjet of howto draw a sample of realizations from a given probability distribution.Why is suh onsideration relevant?
• Visual inspetion of priors, and
• estimation of integrals of the type

I =

∫

f(x)π(x)dxwith the help of Markov hain Monte Carlo (MCMC) tehniques.
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In what follows, we assume to have random number generators for twoelementary distributions at our disposal:

• Standard normal distribution
π(x) =

1√
2π

exp

(

−1

2
x2

)

;in Matlab the ommand randn.
• Uniform distribution over the interval [0, 1],

π(x) = χ[0,1](x);in Matlab the ommand rand.
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Sampling from Gaussian distributionsSuppose that we want to reate a sample of realizations for amultivariate Gaussian random variable X ∼ N (x0,Γ), with theprobability density
π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

.

Sine Γ−1 is (by assumption) symmetri and positive de�nite, it has aCholesky deomposition
Γ−1 = RTR,where R is an upper triangular matrix. Notie that the probabilitydensity of X an alternatively be written as

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
‖R(x− x0)‖2

)

.

288



Enouraged by this observation, we de�ne a new random variable

W = R(X − x0) ⇐⇒ X = R−1W + x0,whih, in partiular, means that
πW (w) = πX(R−1w + x0)|det(R−1)| = πX(R−1w + x0)|det(R)|−1.Using the identity

det(Γ)−1 = det(Γ−1) = det(RT) det(R) = det(R)2,leads �nally to the formula
π(w) =

1

(2π)n/2
exp

(

−1

2
‖w‖2

)

.In onsequene, W is Gaussian white noise, i.e.,
W ∼ N (0, I).289



This transformation is alled the whitening of X and the Cholesky fator

R of the inverse of the ovariane the whitening matrix.If the whitening matrix is known, a random draw from a generalGaussian density an be generated as follows:1. Draw w ∈ R
n from the Gaussian white noise density.2. Compute the sought for realization x ∈ R

n by solving the linearsystem

w = R(x− x0),whih is almost trivial sine R is triangular.
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Random draws from non-Gaussian densities usingdiret samplingLet us next onsider how to draw a random sample diretly from theatual distribution in one dimension.Let X be a real valued random variable with probability density π(x)suh that π(x) = 0 only at isolated points (this assumption an berelaxed). De�ne the umulative distribution funtion via

Φ(z) =

∫ z

−∞
π(x)dx.Due to the assumptions on π, it follows from the fundamental theoremof alulus that Φ is stritly inreasing. In partiular, Φ : R→ (0, 1) hasan inverse Φ−1 : (0, 1)→ R.
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De�ne a new random variable,

T = Φ(X).Lemma. T ∼ Uniform([0, 1]).Proof. Observe �rst that,
P{T < a} = P{Φ(X) < a} = P{X < Φ−1(a)}, 0 < a < 1.On the other hand, due to the de�nition of a probability density,

P{X < Φ−1(a)} =

∫ Φ−1(a)

−∞
π(x)dx =

∫ Φ−1(a)

−∞
Φ′(x)dx

= Φ(Φ−1(a))− lim
x→−∞

Φ(x) = a− 0 = a,whih just means that T is distributed uniformly over the interval [0, 1].
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An algorithm for drawing from the density π:1. Draw t ∼ Uniform([0, 1]),2. Calulate x = Φ−1(t).This tehnique is sometimes referred to as the Golden Rule.
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Example: Gaussian distribution with a bound onstraintConsider a one-dimensional normal distribution with a bound onstraint,

π(x) ∝ πc(x) exp

(

−1

2
x2

)

,where
πc(x) =







1 if x > c,

0 if x ≤ cfor some c ∈ R. Our aim is to generate a sample from this distribution.In this ase, the umulative distribution funtion is
Φ(z) = C

∫ z

c

e−x2/2dx, C =

(∫ ∞

c

e−x2/2dx

)−1

,where C > 0 is the normalizing onstant of the orresponding probabilitydensity. 294



The funtion Φ has to be alulated numerially. Fortunately, there areroutines available to do the needed integration: In Matlab, the built-inerror funtion, erf, is de�ned as

erf(t) =
2√
π

∫ t

0

e−s2

ds.We observe that
Φ(z) = C

(∫ z

0

−
∫ c

0

)

e−x2/2dx =
√

2C

(
∫ z/

√
2

0

−
∫ c/

√
2

0

)

e−s2

ds

=

√
π

2
C
(

erf(z/
√

2)− erf(c/
√

2)
)

.Sine erf(t)→ 1 as t→∞, the same logi also shows that
C =

(√
π

2

(

1− erf(c/
√

2)
))−1

.
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Altogether we have
Φ(z) =

erf(z/
√

2)− erf(c/
√

2)

1− erf(c/
√

2)
.

How about the inverse then?Setting
Φ(z) = t ⇐⇒ z = Φ−1(t),we �nd through a straightforward algebrai manipulation that

erf(z/
√

2) = t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2),or in other words (see erfinv in Matlab)
Φ−1(t) =

√
2 erf−1

(

t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2)
)

.
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The generation of random draws in Matlab is then very simple:a = erf(/sqrt(2));t = rand;z = sqrt(2)*erfinv(t*(1-a)+a);Note: If the bound c is large, the above program does not work beausethe error funtion saturates quikly to unity. To be more preise, e.g. for=10, Matlab interprets that a in the above ode is exatly one, whihmeans that the value of z is Inf independently of the random draw t.An alternative implementation in this ase is to perform the numerialintegration only at the region we are interested in. This approah isdisussed at the exerises.
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Prior models
299



The prior density should re�et our beliefs on the unknown variable ofinterest before taking the measurements into aount.Often, the prior knowledge is qualitative in nature, and transferring theinformation into quantitative form expressed through a prior density anbe hallenging.A good prior should have the following property: Denote by x a possiblerealization of a random variable X ∼ πpr(x). If E is a olletion ofexpeted (i.e., something you would expet to see) vetors x and U is aolletion of unexpeted ones, then it should hold that

πpr(x)≫ πpr(x
′) when x ∈ E, x′ ∈ U,i.e., the prior assigns a learly higher probability to the realization thatwe expet to see.
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Example: Impulse prior densitiesConsider, e.g., an imaging problem where the unknown is the disretizeddistribution of a physial parameter, i.e., a pixel image.Assume that our prior information is that the image ontains small andwell loalized objets in almost onstant bakground. In suh a ase, onemay try impulse prior densities, whih have low average amplitude butallow outliers. (The `tail' of an impulse prior density is long, althoughthe expeted value is small.)Examples of impulse prior densities: Let x ∈ R
n represent a pixel image,where the omponent xj is the intensity of the jth pixel. (In all of thefollowing examples, Xj and Xk are assumed to be independent for

j 6= k.)
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The ℓ1 prior:
πpr(x) =

(α

2

)n

exp(−α‖x‖1), α > 0.where the ℓ1-norm is de�ned as
‖x‖1 =

n∑

j=1

|xj |.

More enhaned impulse noise e�et an be obtained by taking evensmaller power of the omponents of x:
πpr(x) ∝ exp



−α
n∑

j=1

|xj |p


 , 0 < p < 1, α > 0.

Suh priors are studied in the seventh exerise session.
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Another hoie is the Cauhy density that is de�ned via

πpr(x) =
(α

π

)n n∏

j=1

1

1 + α2x2
j

, α > 0.

The entropy of an image is de�ned as
E(x) = −

n∑

j=1

xj log
xj

x0
,

where it is assumed that xj > 0, j = 1, . . . n, and x0 > 0 is a givenonstant. The entropy density is then of the form
π(x) ∝ exp

(
αE(x)

)
, α > 0.
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Log-normal density: The logarithm of a single pixel x ∈ R is normallydistributed, i.e.,
w = log x, w ∼ N (w0, σ

2).The expliit density of x is then
π(x) =

1

x
√

2πσ2
exp

(

− 1

2σ2
(log x− w0)

2

)

, x > 0.

Do these priors represent our beliefs? How do these priors looks like?
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To underline the interpretation as a pixel image, we add a positivityonstraint to the above introdued priors, that is, we make thereplaement
πpr(x)→ Cπ+(x)πpr(x),where π+(x) is one if all omponents of x are positive, and zerootherwise. Here, C is a normalizing onstant: If πpr(x) is a probabilitydensity, the same does not typially apply to π+(x)πpr(x) withoutappropriate saling.For visual inspetion we make random draws of pixel images from theonstrained densities. As all omponents are independent, drawing anbe done omponentwise.To make the draws from one-dimensional densities, we alulate theumulative distribution of the prior density and employ the Golden Rule,as presented at the previous leture.305



Example: Drawing from ℓ1 priorThe one-dimensional umulative distribution of the positivelyonstrained ℓ1 prior is
Φ(t) = α

∫ t

0

e−αsds = 1− e−αt.The inverse umulative distribution is thus
Φ−1(t) = − 1

α
log(1− t).For eah pixel xj , we draw tj from the uniform distribution

Uniform([0, 1]) and alulate xj = −1/α log(1− tj).
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The Matlab ode for doing this is very simple:A=rand(100,100);alfa=1;AL1inv=-1/alfa*log(1-A);figureimages(AL1inv)olormap grayaxis square
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Two random draws of pixel images from a ℓ1-prior.
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Example: Drawing from Cauhy priorThe one-dimensional umulative distribution of the positivelyonstrained Cauhy prior is
Φ(t) =

2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctan(αt),meaning that the inverse umulative distribution is

Φ−1(t) =
1

α
tan

πt

2
.As in the ase of the ℓ1-prior, we draw tj from the uniform distributionand then alulate xj = 1/α tan(πt/2).
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Two random draws of pixel images from a Cauhy prior.
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How do these priors ompare to white noise?Let us onsider a Gaussian prior with a positivity onstraint, i.e.,

πpr(x) ∝ π+(x) exp

(

− 1

2α2
‖x‖2

)

, α > 0.Reall that at the previous leture we implemented drawing from astandard Gaussian distribution with a bound c. In partiular, we wereable to alulate the one-dimensional umulative distribution funtion

Φ−1(t) =
√

2 erf−1
(

t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2)
)

.A similar derivation for c = 0 and the variane α2 instead of 1 yields inthe urrent ase that

Φ−1(t) =
√

2α erf−1(t).
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L
1
 prior Cauchy prior White noise prior

312



DisontinuitiesPrior information: The unknown is a funtion of, say, time. It is knownto be relatively stable for long periods of time, but ontains now andthen disontinuities. We may also have information on the size of thejumps or the rate of ourrene of the disontinuities.A more onrete example: Unknown is a funtion f : [0, 1]→ R. Weknow that f(0) = 0 and that the funtion may have large jumps at a fewloations.After disretizing f , impulse priors an be used to onstrut a prior onthe �nite di�erene approximation of the derivative of f .
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Disretization of the interval [0, 1]: Choose grid points tj = j/N ,

j = 0, . . . , N , and set xj = f(tj).We write a Cauhy-type prior density

πpr(x) =
(α

π

)N N∏

j=1

1

1 + α2(xj − xj−1)2that ontrols the jumps between the adjaent omponents of x ∈ R
N+1.In partiular, the omponents of X are not independent. (In addition tothis prior, we know that X0 = x0 = 0.)To make draws from the above density, we de�ne new variables

ξj = xj − xj−1, 1 ≤ j ≤ N,whih are the hanges in the funtion of interest between adjaent gridpoints. 314



Notie that x̃ = [x1, . . . , xN ]T ∈ R
N satis�es

x̃ = Aξ,where A ∈ R
N×N is a lower triangular matrix suh that Ajk = 1 for

j ≥ k. Hene, it follows, e.g., from the hange of variables rule forprobability densities that
πpr(ξ) =

(α

π

)N N∏

j=1

1

1 + α2ξ2j
.

In partiular, due to the produt form of πpr(ξ), the omponents of Ξare mutually independent, and an thus be drawn from aone-dimensional Cauhy density.Subsequently, a random draw from the distribution of X an beonstruted by realling that x0 = 0 and using the relation x̃ = Aξ.315
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Sample-based densitiesAssume that we have a large sample of realizations of a random variable

X ∈ R
n:

S = {x1, x2, . . . , xN}.One way to onstrut a prior density for X is to approximate π(x) basedon S.Estimates of the mean and the ovariane:
E{X} ≈ 1

N

N∑

j=1

xj =: x̄,

cov(X) = E{XXT} −E{X}E{X}T ≈ 1

N

N∑

j=1

xj(xj)T − x̄x̄T =: Γ.(Notie that Γ is not the unbiased sample ovariane estimator, but letus anyway follow the notation of the text book.)317



The eigenvalue deomposition of Γ is

Γ = UDUT,where U ∈ R
n×n is orthogonal and has the eigenvetors of Γ as itsolumns, and D ∈ R

n×n is diagonal with the eigenvalues

d1 ≥ . . . ≥ dn ≥ 0 as its diagonal entries. (Note that Γ is learlysymmetri and positive semi-de�nite, and thus it has a full set ofeigenvetors with non-negative eigenvalues.)The vetors xj , j = 1, . . . , N , are typially `somewhat similar' and thematrix Γ an onsequently be singular or almost singular: Theeigenvalues often satisfy dj ≈ 0 for j > r, where 1 < r < n is someut-o� index. In other words, the di�erene X −E{X} does not seemto vary muh in the diretion of the eigenvetors ur+1, . . . , un.
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Assume this is the ase. Then, one an postulate that the values of therandom variable X −E(X) lie `with a high probability' in the subspaespanned by the �rst r eigenvetors of Γ. One way of trying to state thisinformation quantitatively, is to introdue a subspae prior

π(x) ∝ exp
(
−α‖(1− P )(x− x̄)‖2

)
,where P is the orthogonal projetor R

n → span{u1, . . . , ur}. Theparameter α > 0 ontrols how muh X − x̄ is allowed to vary from thesubspae span{u1, . . . , ur}. (Take note that suh a subspae prior is nota probability density in the traditional sense.)
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If Γ is not almost singular, the inverse Γ−1 an be omputed stably. Inthis ase, the most straightforward way of approximating the (prior)probability density of X is to introdue the Gaussian approximation:

πpr(x) ∝ exp

(

−1

2
(x− x̄)TΓ−1(x− x̄)

)

.Depending on the higher order statistis of X , this may or may notprovide a good approximation for the distribution of X .

320



Posterior density and a simple linear modelConsider a linear system of equations with noisy right hand side,

y = Ax+ e, x ∈ R
n, y, e ∈ R

m, A ∈ R
m×n.The orresponding stohasti extension reads

Y = AX +E,where X , Y and E are random variables.A very ommon assumption: X and E are independent and Gaussian,

X ∼ N (0, γ2Γ), E ∼ N (0, σ2I),where we have assumed that both X and E have zero mean. (If thiswas not the ase, the means ould be subtrated from the respetiverandom variables.) 321



The ovariane of the noise indiates that the omponents of Y areontaminated by independent and identially distributed Gaussianrandom variables of variane σ2. On the other hand, the priordistribution of X is assumed to have a bit more struture: Γ need not bediagonal and the parameter γ2 is introdued for ontrolling the`magnitude' of the (prior) ovariane.In other words, the prior density is of the form
πpr(x) ∝ exp

(

− 1

2γ2
xTΓ−1x

)

,and assuming that the noise level σ2 is known, the likelihood funtionreads as

π(y |x) ∝ exp

(

− 1

2σ2
‖y −Ax‖2

)

.
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It follows from the Bayes formula that the posterior density is

π(x | y) ∝ πpr(x)π(y |x)

∝ exp

(

− 1

2γ2
xTΓ−1x− 1

2σ2
‖y −Ax‖2

)

= exp(−V (x | y)),where

V (x | y) =
1

2γ2
xTΓ−1x+

1

2σ2
‖y −Ax‖2.
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If Γ is symmetri and positive de�nite, so is Γ−1. Hene, we anintrodue a Cholesky fatorization:

Γ−1 = RTR.With this notation,
xTΓ−1x = xTRTRx = ‖Rx‖2,and we de�ne

T (x) = 2σ2V (x | y) = ‖y −Ax‖2 + δ‖Rx‖2, δ :=
σ2

γ2
.The funtional T is sometimes referred to as the Tikhonov funtional.
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Reall that the maximum a posteriori (MAP) estimator maximizes theposterior probability density of the unknowns:

xMAP = arg max
x∈Rn

π(x | y).In our setting,
xMAP = arg minV (x | y) beause V (x | y) = − log π(x | y).With the help of the Tikhonov funtional, this reads

xMAP = arg min T (x) = arg min
(
‖y −Ax‖2 + δ‖Rx‖2

)
.Reall that the Tikhonov regularized solution of y = Ax � with thepenalty term ‖Rx‖ � is the minimizer of T (x). In onsequene, theTikhonov regularized solution and xMAP oinide if the regularizationparameter is hosen to be δ = σ2/γ2.325
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Example: Laplae transform (revisited)Reall the problem of �nding a funtion f from noisy samples of itsLaplae transform. This problem was disussed at the ninth leture andsolved using various lassial regularization tehniques.We take another look at the problem, and interpret its Tikhonovregularized solution from the statistial viewpoint.
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Laplae transformLet f : [0,∞)→ R be some unknown funtion and assume that we haveaess to noisy samples of its Laplae transform

Lf(s) =

∫ ∞

0

e−stf(t) dt, s ≥ 0,at some measurement points sj , j = 1, . . . ,m. The task is toapproximate f using the noisy values {Lf(sj)}mj=1 as data.Observe that for large t the kernel e−st is typially very small, and henethe `tail' of f does not a�et the Laplae transform as muh as itsvalues lose to the origin. In onsequene, reonstruting f is anill-posed inverse problem.
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DisretizationIn order to ome up with a omputational model, we approximate theintegral of the Laplae transform as

Lf(sj) ≈
∫ T

0

e−sjtf(t) dt ≈
n∑

k=1

wke
−sjtkf(tk), j = 1, . . . ,m,where t1, . . . , tn ∈ [0, T ] are the nodes and w = (w1, . . . , wn)T ∈ R

n theorresponding weights of the hosen quadrature rule. Notie that it isimpliitly assumed that e−stf(t) is `small' for all t that are larger thanthe threshold T > 0.For example, if we deided to use the trapezoid rule on an equidistantmesh in the interval [0, T ], we would hoose h = T/(n− 1) and

w = (h/2, h, h, . . . , h, h, h/2)T and tk = (k − 1)hfor k = 1, . . . , n. 329



The above quadrature rule an be written in the matrix form

y = Ax,where x ∈ R
n and y ∈ R

m are given by
x = (f(t1), . . . , f(tn))T

y = (Lf(s1), . . . ,Lf(sm))T,and the elements of the matrix A ∈ R
m×n are de�ned as

(A)jk = wke
−sjtk , j = 1, . . . ,m, k = 1, . . . , n.
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In the following numerial examples, we hoose m = 91 sampling pointson a logarithmi grid:
log sj = − log 10 + 2

(j − 1)

m− 1
log 10, j = 1, . . . ,m,where log denotes the natural logarithm. Now, the points {log sj}mj=1form a uniform grid in the interval [− log(10), log(10)], and thus

{sj}mj=1 lie in the interval [0.1, 10], with half of the points between 0.1and 1. This re�ets our knowledge that the information in the Laplaetransform is � very loosely speaking � onentrated lose to the origin.We set n = 101 and hoose the nodes {tk}nk=1 and the weights w ∈ R
naording to the Gauss�Legendre quadrature rule in the interval [0, 5].(One ould use something less sophistiated, suh as trapezoid rule inthis same interval, as well.)
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Simulation of dataWe hoose
f(t) =







t3 − 4t2 + 4t, 0 ≤ t < 2,

0, t ≥ 2.In this simple ase, the Laplae transform an be alulated expliitlywith the help of partial integration:
Lf(s) =

4

s2
− 4

s3
(2 + e−2s) +

6

s4
(1− e−2s), s > 0.Consequently, we just ompute the value of Lf(s) at the hosensampling points {sj}mj=1 using this formula, add realizations of anormally distributed random variable with zero mean and standarddeviation 10−3 to eah sample, plug the resulting data into the vetor y,and we are ready to go.
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Target funtion and the nodes
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Laplae transform and the noisy measurements
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Tikhonov regularized solutionWe onsider the above introdued disretized �inverse Laplae transformproblem�
Ax = y.Reall that the Tikhonov regularized solution xδ ∈ R

n is the uniqueminimizer of the Tikhonov funtional
‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expliitly by the formula
xδ = (ATA+ δI)−1ATy.Aording to the Morozov disrepany priniple a feasible hoie for theregularization parameter is suh δ = δMor that the orrespondingsolution satis�es

‖y −AxδMor
‖ ≈ ǫ = 10−3 · √m ≈ 9.5 · 10−3.335



Statistial modelLet us introdue the stohasti extension

Y = AX +E,where X ∈ R
n, Y ∈ R

m and E ∈ R
m are random variables. We assumethat X and E are independent and Gaussian,

X ∼ N (0, γ2I), E ∼ N (0, σ2I).Reall from the previous leture that with these assumptions themaximum a posteriori estimate
xMAP = arg maxπ(x | y)is given as

xMAP = arg min
(
‖y −Ax‖2 + δ‖x‖2

)
, δ =

σ2

γ2
.
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Suppose that we know the noise level, i.e., σ = 10−3.Then, we still need to hoose the standard deviation (or the variane) ofthe prior density based on our a priori information on the unknownfuntion f . If we believe that the order of magnitude of the values of fis, say, one, a suitable hoie for γ ould be, e.g., γ = 1 or γ = 0.5.(Note that our prior mean is set to zero.)With γ = 0.5 we get δ = σ2

γ2 = 4 · 10−6.How does the orresponding Tikhonov regularized solution look like?
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Tikhonov regularized solution with δ = 4 · 10−6
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Traditional Tikhonov with δ = δMor ≈ 3.6 · 10−5 (solid),

δ = 103 · δMor (slashed) and δ = 10−3 · δMor (dotted)
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The previous test ases presented at the ninth leture orrespond to thefollowing hoies of the prior standard deviation:

δ = δMor =⇒ γ = 0.167,

δ = 103 · δMor =⇒ γ = 0.00527,

δ = 10−3 · δMor =⇒ γ = 5.27.
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n-variate Gaussian densities
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De�nition. Let
Γ =




Γ11 Γ12

Γ21 Γ22



 ∈ R
n×n

be a positive de�nite and symmetri matrix, with Γ11 ∈ R
k×k, k < n,

Γ22 ∈ R
(n−k)×(n−k), and Γ21 = ΓT

12 ∈ R
(n−k)×k. We de�ne the Shuromplement Γ̃jj of Γjj , j = 1, 2, by the formulas

Γ̃22 = Γ11 − Γ12Γ
−1
22 Γ21, Γ̃11 = Γ22 − Γ21Γ

−1
11 Γ12

Observe that the de�nition of Γ implies that Γjj , j = 1, 2, aresymmetri, positive de�nite and, in partiular, invertible. Inonsequene, the Shur omplements are well de�ned and symmetri.
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Lemma. Let Γ be a matrix that satis�es the assumptions of theprevious de�nition. Then, the Shur omplements Γ̃jj , j = 1, 2, areinvertible matries and, furthermore,
Γ−1 =




Γ̃−1

22 −Γ̃−1
22 Γ12Γ

−1
22

−Γ̃−1
11 Γ21Γ

−1
11 Γ̃−1

11



 .
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Proof: We prove �rst that the Shur omplements are invertible:Consider the determinant of Γ,
|Γ| =

∣
∣
∣
∣
∣
∣

Γ11 Γ12

Γ21 Γ22

∣
∣
∣
∣
∣
∣

6= 0.

By subtrating the �rst row multiplied by Γ21Γ
−1
11 from the seond one,we �nd that

|Γ| =

∣
∣
∣
∣
∣
∣

Γ11 Γ12

0 Γ22 − Γ21Γ
−1
11 Γ12

∣
∣
∣
∣
∣
∣

= |Γ11||Γ̃11|,

implying that |Γ̃11| 6= 0. In the same way, we an also show that

|Γ̃22| 6= 0.
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The proof of the seond assertion of the lemma follows from theGaussian elimination: Consider the linear system




Γ11 Γ12

Γ21 Γ22








x1

x2



 =




y1

y2



 .

By solving for x2 in the seond equation, we get

x2 = Γ−1
22 (y2 − Γ21x1).Substituting this formula into the �rst equation, then gives us

(Γ11 − Γ12Γ
−1
22 Γ21)x1 = y1 − Γ12Γ

−1
22 y2,or equivalently

x1 = Γ̃−1
22 y1 − Γ̃−1

22 Γ12Γ
−1
22 y2,whih veri�es the �rst row of laimed representation of Γ−1. The seondrow of the representation follows by reversing the roles of x1 and x2.345



Remark: Sine Γ is a symmetri matrix, so is Γ−1. In onsequene, wehave the identity
Γ̃−1

11 Γ21Γ
−1
11 = (Γ̃−1

22 Γ12Γ
−1
22 )T = Γ−1

22 Γ21Γ̃
−1
22 .
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Theorem. Let X ∈ R
n and Y ∈ R

m be two Gaussian random variableswhose joint probability density π : R
n × R

m → R+ is of the form

π(x, y) ∝ exp




−1

2




x− x0

y − y0





T 


Γ11 Γ12

Γ21 Γ22





−1 


x− x0

y − y0








 .

Then, the probability density of X onditioned on Y = y, i.e.,

π(x | y) : R
n → R+, is of the form

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ̃−1

22 (x− x̄)
)

,where

x̄ = x0 + Γ12Γ
−1
22 (y − y0).
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Proof: For simpliity, let us assume that x0 = 0 and y0 = 0.Due the representation of the joint ovariane matrix Γ−1 provided bythe previous Lemma and the remark that followed, we may write

π(x, y) ∝ exp

(

−1

2

(
xTΓ̃−1

22 x− 2xTΓ̃−1
22 Γ12Γ

−1
22 y + yTΓ̃−1

11 y
)
)

= exp

(

−1

2

(
(x− Γ12Γ

−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y) + c

)
)

,where c = yT(Γ̃−1
11 − Γ−1

22 Γ21Γ̃
−1
22 Γ12Γ

−1
22 )y. Hene, it follows that

π(x | y) ∝ π(x, y) ∝ exp

(

−1

2
(x− Γ12Γ

−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y)

)

,where the proportionality onstants depend on y but not on x. Thisproves the laim. �
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Theorem. Let X and Y be Gaussian random variables with a jointprobability density as in the previous theorem. Then, the marginaldensity of X is
π(x) =

∫

Rm

π(x, y)dy ∝ exp

(

−1

2
(x− x0)

TΓ−1
11 (x− x0)

)

.

Proof: The proof is slightly more ompliated than the previous one. Itan be found in the textbook by Kaipio and Somersalo.
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Linear inverse problemAssume that we have a linear model with additive noise,

Y = AX +E,where A ∈ R
m×n is a known matrix, and X ∈ R

n and Y,E ∈ R
m arerandom variables. Assume furthermore that X and E are mutuallyindependent Gaussian variables with probability densities

πpr(x) ∝ exp

(

−1

2
(x− x0)

TΓ−1
pr (x− x0)

)

,and

πnoise(x) ∝ exp

(

−1

2
(e− e0)TΓ−1

noise(e− e0)
)

.
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With this information, we get from the Bayes formula that the posteriordistribution of X onditioned on Y = y is

π(x | y) ∝ πpr(x)π(y |x) = πpr(x)πnoise(y −Ax)

∝ exp

(

−1

2
(x− x0)

TΓ−1
pr (x− x0)−

1

2
(y −Ax− e0)TΓ−1

noise(y −Ax− e0)
)

The expliit form of this posterior distribution, i.e., the form that showsthe posterior mean and ovariane expliitly, an be alulated in astraightforward but tedious manner by `ompleting the squares' withrespet to x. However, we may also use the �rst of the two theoremspresented on the previous few slides.
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Sine X and E are Gaussian, so is Y , and we have

E










X

Y










=




x0

y0



 , y0 = Ax0 + e0

Furthermore, using the fat that X and E are independent, we deduethat

E
{
(X − x0)(X − x0)

T
}

= Γpr,

E
{
(Y − y0)(Y − y0)T

}
= E

{(
A(X − x0) + (E − e0)

)(
A(X − x0) + (E − e0)

)T
}

= AΓprA
T + Γnoise,

E
{
(X − x0)(Y − y0)T

}
= E

{

(X − x0)
(
A(X − x0) + (E − e0)

)T
}

= ΓprA
T.
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Hene, we get
cov




X

Y



 = E










X − x0

Y − y0








X − x0

Y − y0





T






=




Γpr ΓprA

T

AΓpr AΓprA
T + Γnoise



 .

The joint probability density of X and Y is thus of the form

π(x, y) ∝ exp




−1

2




x− x0

y − y0





T 


Γpr ΓprA

T

AΓpr AΓprA
T + Γnoise





−1 


x− x0

y − y0








 .

Using the �rst of the above two theorems, we an thus write theposterior density of X onditioned on Y = y.
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Theorem. Assume that X ∈ R
n and E ∈ R

m are mutually independentGaussian random variables,

X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise)and Γpr ∈ R
n×n and Γnoise ∈ R

m×m are positive de�nite. Assumefurther that we have a linear model Y = AX +E for a noisymeasurement Y , where A ∈ R
m×n is a known matrix. Then, theposterior probability density of X given the measurement Y = y is

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ−1

post(x− x̄)
)

,where

x̄ = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y −Ax0 − e0),and

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.354



Remark: It holds that
Γpr − Γpost = ΓprA

T(AΓprA
T + Γnoise)

−1AΓpr,whih is a positive semi-de�nite matrix. Loosely speaking, this meansthat the prior density is wider than the posterior, i.e., the measurementdereases the unertainty in the whereabouts of X .Remark: As already mentioned, the expliit forms of the mean and theovariane of the Gaussian posterior density for this linear model analso be derived diretly. This way we get alternative representations forthe posterior ovariane matrix
Γpost = (Γ−1

pr + ATΓ−1
noiseA)−1and the posterior mean

x̄ = (Γ−1
pr +ATΓ−1

noiseA)−1(ATΓ−1
noise(y − e0) + Γ−1

pr x0).355



Gaussian white noise prior and Tikhonov regularizationConsider the simple Gaussian white noise prior ase, X ∼ N (0, γ2I),and assume also that the noise is white noise, i.e., E ∼ (0, σ2I). In thispartiular ase the mean of the posterior distribution given by the abovetheorem turns into
x̄ = γ2AT(γ2AAT + σ2)−1y = AT(AAT + δI)−1y,where δ = σ2/γ2.It an be shown (the seventh exerise session) that this form isequivalent to the Tikhonov regularized solution

xδ = (ATA+ δI)−1ATy,whih is not very surprising, as we have already dedued at the previousleture that xMAP = xδ for δ = σ2/γ2 and, on the other hand,
xCM = xMAP for a Gaussian posterior distribution.356
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Improper Gaussian priors
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Motivation: Smoothness priorsReall from the thirteenth leture that �nding the maximum a posterior(MAP) � or onditional mean (CM) � estimate for the linear inverseproblem
Y = AX +E, Y,E ∈ R

m, X ∈ R
n,where X and E are independent and Gaussian with zero mean,

X ∼ N (0,Γ), E ∼ N (0, σ2I),is equivalent to minimizing the Tikhonov funtional
T (x) = ‖y −Ax‖2 + σ2‖Rx‖2,where R satis�es Γ−1 = RTR. (The matrix R an be, e.g., the Choleskyfator of the positive de�nite and symmetri matrix Γ−1.)
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Let us then try to work our way in the opposite diretion: Consider theorresponding lassial linear inverse problem

Ax = y,and let us solve it using Tikhonov regularization under the priorknowledge that x ∈ R
n represents point values of a smooth funtion.We try to inorporate this extra information in the solution proess byusing a `smoothness penalty term' for the Tikhonov funtional:

T (x) = ‖y − Ax‖2 + δ‖Lx‖2,where L ∈ R
k×n is a disrete approximation of some suitable di�erentialoperator.
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If you now ompare the two Tikhonov funtionals on the previous twoslides, it seems natural that the Gaussian stohasti extensionorresponding to the smoothness penalty approah would be

Y = AX +E,with

X ∼ N (0, (LTL)−1), E ∼ N (0, σ2I),where σ2 = δ.Unfortunately, there is a slight �aw in this logi: In order for the inverse

(LTL)−1 to exist � and to be positive de�nite � the matrix L ∈ R
k×nneeds to be injetive, whih is not always the ase. (As an example,quite often Lx = 0 if all elements of x are the same.)
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Due to this observation, we will next onsider improper densities of theform:
πpr(x) ∝ exp

(

−1

2
‖L(x− x0)‖2

)

= exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,where L ∈ R
k×n is a given, possible non-injetive matrix.We will takle the problem of interpreting suh densities as Gaussianpriors in three di�erent ways:1. by introduing a proper density that is `lose' to the onsideredimproper density,2. by noting that the posterior density may be proper even if the prioris improper, and3. by using onditioning to update improper priors so that they beomeproper. 362



Approximate proper densitiesReall from the �rst part of the ourse that any L ∈ R
k×n has a singularvalue deomposition L = UΛV T, where U ∈ R

k×k and V ∈ R
n×n areorthogonal, and the diagonal matrix Λ ∈ R

k×n ontains thenon-negative singular values
λ1 ≥ λ2 ≥ . . . ≥ λp > λp+1 = . . . = λl = 0, l := min(k, n).Moreover, reall that the olumns {v1, . . . , vn} of V satisfy

Ker(L) = span{vp+1, . . . , vn},and let us de�ne Q = [vp+1, . . . , vn] ∈ R
n×(n−p). In partiular, it is easyto see that QQT ∈ R

n×n is the orthogonal projetion onto Ker(L).
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We then de�ne an auxiliary ovariane matrix Γa ∈ R
n×n via

Γa = L†(L†)T + a2QQT,where L† ∈ R
n×k is the pseudoinverse of L and a > 0 is an arbitrary(large) salar.Lemma. The ovariane matrix Γa de�ned above is positive de�nite.Moreover, its inverse an be written expliitly as

Γ−1
a = LTL+

1

a2
QQT.

Let x ∈ R
n be arbitrary and write it in the orthonormal basis

{v1, . . . , vn}, i.e.,

x =

n∑

j=1

αjvj , αj ∈ R,
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Then,
Γax =

p
∑

j=1

αj

λ2
j

vj + a2
n∑

j=p+1

αjvj ,and thus
xTΓax =

p
∑

j=1

α2
j

λ2
j

+ a2
n∑

j=p+1

α2
j > 0if x 6= 0, i.e., Γa is positive de�nite.Moreover,

(LTL+
1

a2
QQT)Γax =

p
∑

j=1

αjvj +
n∑

j=p+1

αjvj = x,

whih proves that Γ−1
a = (LTL+ 1

a2QQ
T), as x was hosen arbitrarily.
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Instead of hoosing the improper prior

πpr(x) ∝ exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,one may onsider resorting to the slightly modi�ed version

π̃pr(x) ∝ exp

(

−1

2
(x− x0)

TΓ−1
a (x− x0)

)

,whih de�nes a proper Gaussian density beause Γa is positive de�nitefor any a > 0.
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Let us next onsider in whih way these two densities are di�erent; forsimpliity assume that x0 = 0.Let P : R
n → Ker(L)⊥ be an orthogonal projetion, whih means, inpartiular, that I − P is the orthogonal projetion onto Ker(L), i.e.,

I − P = QQT. Trivial alulations show that

πpr(x) = πpr(Px), x ∈ R,and

π̃pr(x) ∝ πpr(Px) exp

(

− 1

2a2
‖(I − P)x‖2

)

.In onsequene, πpr(x) is onstant as a funtion of the omponent

(I − P)x of x, whih makes it an improper prior. Moreover, thefuntional dependene of πpr(x) and π̃pr(x) on Px is the same, but

π̃pr(x) has also a `density-like' dependene on (I −P)x. To sum up, thelarger a > 0 is, the `loser' these two densities are to eah other.367



Proper posteriors orresponding to improper priorsReall the following theorem from the fourteenth leture:Theorem. Assume that X ∈ R
n and E ∈ R

m are mutually independentGaussian random variables, X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise), andthat Γpr ∈ R
n×n and Γnoise ∈ R

m×m are positive de�nite. Assumefurther that we have a linear model Y = AX +E for a noisymeasurement Y , where A ∈ R
m×n is a known matrix. Then, theposterior probability density of X given the measurement Y = y is

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ−1

post(x− x̄)
)

,where

x̄ = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y −Ax0 − e0),and

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.368



When dealing with improper prior densities of the form

πpr(x) ∝ exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,this theorem is unfortunately useless in the onstrution of the posterior,beause the natural andidate for the prior ovariane, i.e., (LTL)−1,does not typially exist.However, reall that we also introdued alternative formulas for theposterior mean and ovariane, namely
Γpost = (Γ−1

pr +ATΓ−1
noiseA)−1,and

x̄ = (Γ−1
pr +ATΓ−1

noiseA)−1(ATΓ−1
noise(y − e0) + Γ−1

pr x0).These formulas look more promising as they involve only Γ−1
pr , not Γpr.369



For simpliity let us only onsider the zero mean ase:Theorem. Consider the linear observation model Y = AX +E,

A ∈ R
m×n, where X ∈ R

n and E ∈ R
m are mutually independentrandom variables, of whih E is proper Gaussian, E ∼ N (0,Γnoise). Let

L ∈ R
k×n be a matrix suh that Ker(L) ∩Ker(A) = {0}. Then thefuntion

x 7→ πpr(x)π(y |x) ∝ exp

(

−1

2

(
‖Lx‖2 + (y −Ax)TΓ−1

noise(y −Ax)
)
)

de�nes a Gaussian density over R
n, with the orresponding ovarianeand mean given by the formulas

Γpost = (LTL+ATΓ−1
noiseA)−1, x̄ = ΓpostA

TΓ−1
noisey,respetively.
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Proof: Let us denote G = LTL+ATΓ−1
noiseA ∈ R

n×n and let x ∈ R
nbe arbitrary. Beause Γ−1

noise is positive de�nite, we have

xTGx = ‖Lx‖2 + (Ax)TΓ−1
noise(Ax) ≥ 0,where the equality holds only if x ∈ Ker(L) ∩Ker(A) = {0}. Inonsequene, G is positive de�nite, meaning that Γpost = G−1 iswell-de�ned and also positive de�nite.By ompleting the square with respet to x, the the quadrati funtionalin the exponent of the posterior density an be written as

‖Lx‖2 + (y −Ax)TΓ−1
noise(y −Ax) = xTGx− 2xTATΓ−1

noisey + yTΓ−1
noisey

= (x− x̄)TG(x− x̄) + c,where c ∈ R depends only on y, not on x, and
x̄ = G−1ATΓ−1

noisey = ΓpostA
TΓ−1

noisey. �371



If Ker(L) ∩Ker(A) 6= {0}, the `andidate posterior density' is not aproper probability density. Indeed, it readily follows that

πpr(x)π(y |x) ∝ exp

(

−1

2

(
‖Lx‖2 + (y −Ax)TΓ−1

noise(y −Ax)
)
)

= exp

(

−1

2

(
‖LPx‖2 + (y − APx)TΓ−1

noise(y − APx)
)
)

,where P : R
n → (Ker(L) ∩Ker(A))

⊥ is an orthogonal projetion. Thismeans that πpr(x)π(y |x) is a onstant as a funtion of the omponentof x in the diretion of the non-trivial subspae Ker(L) ∩Ker(A), andthus its integral over the whole R
n does not attain a �nite value.
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Using onditioning to reate proper priorsSuppose that we would like to have a prior density of the form

πpr(x) ∝ exp

(

−1

2
xTLTLx

)

, x ∈ R
n,where L ∈ R

k×n is some given matrix. As we have already seen, if L isnot injetive, suh a prior is improper. One tehnique for obtaining aproper prior based on πpr(x) is �xing the values of some omponents of

x, and then onsidering πpr as a probability density of the remainingones.To this end, we partition x as x = [(x′)T, (x′′)T]T, where, possibly afterreordering the omponents, x′′ ∈ R
j , 0 ≤ j ≤ n, ontains the �xedomponents and x′ ∈ R

n−j arries the unspei�ed ones.
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Let us partition the matrix LTL aordingly, i.e.,

LTL =: B =




B11 B12

B21 B22



 ,

where B11 ∈ R
(n−j)×(n−j) and B22 ∈ R

j×j are symmetri, and

B12 ∈ R
(n−j)×j and B21 ∈ R

j×(n−j) satisfy B12 = BT
21. In whatfollows, we assume that B11 invertible. This an often be ahieved by�xing su�iently many omponents of x, i.e., by hoosing x′′ to beextensive enough.Let us derive the onditional density of X ′ given X ′′ = x′′ properly forone, i.e., in suh a way that no onstant of proportionality depends onany of the variables at any stage:
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Taking into aount that this time we have partitioned our originalandidate for the inverse ovariane of X , it follows with some workfrom the seond theorem of the fourteenth leture that the (improper)marginal density of X ′′ is
π(x′′) ∝ exp

(

−1

2
(x′′)TB̃11x

′′
)

,where B̃11 = B22 −B21B
−1
11 B12 ∈ R

j×j is the Shur omplement of

B11. Moreover, it is a straightforward onsequene of the partitioning of

B that

π(x′, x′′) ∝ exp

(

−1

2
((x′)TB11x

′ + 2(x′)TB12x
′′ + (x′′)TB22x

′′)

)

.
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Without paying too muh attention to the fat that some densities maybe improper, we then write

π(x′ |x′′) =
π(x′, x′′)

π(x′′)

∝ exp

(

−1

2
((x′)TB11x

′ + 2(x′)TB12x
′′ + (x′′)TB21B

−1
11 B12x

′′)

)

= exp

(

−1

2
(x′ +B−1

11 B12x
′′)TB11(x

′ +B−1
11 B12x

′′)

)

.NB: One ould have obtained this same formula for π(x |x′′) by justexluding π(x′′) and all other multipliers that depend only on x′′. At theend, one ould have then argued that π(x′ |x′′) must be Gaussian, andthus the onstant of proportionality between π(x′ |x′′) and the last lineabove annot depend on x′′, but only on B11. Suh argument showsalso that the onstants of proportionality in the theorems presented atthe fourteenth leture do not depend on any of the variables.376



To reate a prior density that is proper for all omponents of X we maynow proeed as follows. We �rst de�ne a proper Gaussian probabilitydistribution for the variable X ′′ ∈ R
j ,

X ′′ ∼ N (x′′0 ,Γ
′′),where Γ′′ ∈ R

j×j is symmetri and positive de�nite. The orrespondingdensity is denoted by π0.Then, we obtain a new andidate for the prior density of X by writing

π̃pr(x
′, x′′) = π(x′ |x′′)π0(x

′′)

∝ exp

(

−1

2
(x′ +B−1

11 B12x
′′)TB11(x

′ +B−1
11 B12x

′′)

)

× exp

(

−1

2
(x′′ − x′′0 )T(Γ′′)−1(x′′ − x′′0)

)

= exp

(

−1

2
(x− x0)

TΓ̃−1
prior(x− x0)

)

,377



where the mean x0 ∈ R
n and the ovariane Γ̃prior ∈ R

n×n an beobtained relatively easily by ompleting the squares:

x0 =




−B−1

11 B12x
′′
0

x′′0





and

Γ̃prior =




B11 B12

B21 B21B
−1
11 B12 + (Γ′′)−1





−1

.
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Exploring non-Gaussian densities
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Why sampling is needed?Remember that the CM estimate and the onditional ovariane requiresolving integration problems involving the posterior density:

xCM = E{x | y} =

∫

Rn

xπ(x | y)dx

cov(x | y) =

∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx.In a non-Gaussian ase, these integrals annot typially be expressed in alosed form, and one must thus resort to numerial integration in R
n.
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Suppose that our aim is to estimate some quantity of the form

I =

∫

f(x)π(x)dx.How about using quadrature rules? In priniple, we ould approximate

I =

∫

f(x)π(x)dx ≈
N∑

j=1

wjf(xj)π(xj),

with some suitable weights {wj} and nodal points {xj}. Unfortunately,if n is large, suh omputation is not feasible: For a quadrature rule with

k disretization points per dimension, the total number of nodes is

N = kn. In addition, the realization of a quadrature rule would requirereliable information about the loation of the probability density π.
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Often it is more advisable to resort to sampling: Draw a large enoughsample {xj}Nj=1 from the probability distribution orresponding to π(x),and use these points to approximate the integral as

I =

∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N∑

j=1

f(xj).Aording to the Law of Large Numbers,
lim

N→∞

1

N

N∑

j=1

f(xj) =: lim
N→∞

IN = Ialmost surely, i.e., the sample average onverges almost surely to theexpeted value. Furthermore, the Central Limit Theorem states that

var(IN − I) ≈
var(f(X))

N
,i.e., the disrepany between I and IN should go to zero like 1/

√
N .383



Markov Chain Monte Carlo
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Random walk in R
nRandom walk in R

n is a proess of moving around by taking randomsteps. Elementary random walk:1. Choose a starting point x0 ∈ R
n and a 'step size' σ > 0. Set k = 0.2. Draw a random vetor wk+1 ∼ N (0, I) and set xk+1 = xk +σwk+1.3. Set k ← k + 1 and return to step 2, unless your stopping riterion issatis�ed.The loation of the random walk at time k is a realization of the randomvariable Xk, and we have an evolution model

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, I).
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The onditional density of Xk+1, given Xk = xk, is

π(xk+1 |xk) =
1

(2πσ2)n/2
exp

(

− 1

2σ2
‖xk − xk+1‖2

)

= q(xk, xk+1).

The funtion q is alled the transition kernel. Sine q does not dependon k, i.e., the step is always distributed in the same way, the kernel isalled time invariant.The proess above de�nes a hain {Xk}∞k=0 of random variables. Thishain is a disrete time stohasti proess. Note that

π(xk+1 |x0, x1, . . . , xk) = π(xk+1 |xk),i.e., the probability distribution of Xk+1 depends on the past onlythrough the preeding element Xk. A stohasti proess with thisproperty is alled a Markov hain.
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Example: Random walk in R
2A random walk model in R

2:

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, C), C ∈ R
2×2.Sine C is symmetri and positive de�nite, it has positive eigenvaluesand allows an eigenvalue deomposition

C = UDUT.Hene, the inverse of C an be written as
C−1 = UD−1UT = (UD−1/2) (D−1/2UT)

︸ ︷︷ ︸

=L

,

whih means that the transition Kernel an in turn be given as
q(xk, xk+1) = π(xk+1 |xk) ∝ exp

(

− 1

2σ2
‖L(xk − xk+1)‖2

)

.
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Consequently, the random walk model beomes

Xk+1 = Xk + σL−1W̃k+1, W̃k+1 ∼ N (0, I),where we have used the fat that L is the whitening matrix of Wk+1.To demonstrate the e�et of the ovariane matrix, let

U = [u(1), u(2)] =




cos θ − sin θ

sin θ cos θ



 , θ =
π

3
,

and

D = diag(s21, s
2
2), s1 = 1, s2 = 4.In the light of this random walk model, the random steps should onaverage have a omponent about four times larger in the diretion of theseond eigenvetor e2 than in the diretion of the �rst eigenvetor e1.388
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On the left, three random walk realizations for C = I; on the right, threerealizations for C given above. In both ases, σ = 0.1 and x0 = [0, 0]T.389



How about sampling from a given density p(x)?Assume now that X is a random variable with a probability density

π(x) = p(x).Consider an arbitrary transition kernel q(x, y) that we use to generate anew random variable Y given X = x, that is,

π(y |x) = q(x, y).The probability density of Y is found via marginalization,

π(y) =

∫

π(y |x)π(x)dx =

∫

q(x, y)p(x)dx.If the probability density of Y is equal to the probability density of X ,i.e., ∫

q(x, y)p(x)dx = p(y),we say that p is an invariant density of the transition kernel q.390



To summarize, if p is an invariant density of the transition kernel q andthe random variable X obeys the density p, then the random variable Yde�ned via the onditional density π(y |x) = q(x, y) is still distributedaording to the density p. Loosely speaking, the transition de�ned by qdoes not a�et the distribution of X .This property of invariant densities and orresponding transition kernelsan be put to use in sampling.
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Theorem. Let {Xk}∞k=0 be a time invariant Markov hain with thetransition kernel q, i.e.,
π(xk+1 |xk) = q(xk, xk+1).Assume that p is an invariant density of q, and that q satis�es someextra tehnial onditions (irreduibility and aperiodiity). Then, for all

x0 ∈ R and any Borel set B ∈ R
n, it holds that

lim
N→∞

P{XN ∈ B | X0 = x0} =

∫

B

p(x)dx.Moreover, for any regular enough funtion f ,
lim

N→∞

1

N

N∑

j=0

f(Xj) =

∫

Rn

f(x)p(x)dxalmost surely.Proof. Proof is omitted due to obvious reasons. �392



Let us try to put the above theorem into pratial use. Suppose that wewant to sample some probability density p and happen to know that it isinvariant with respet to some transition kernel q. Then, we an proeedas follows:1. Selet a starting point x0 and set k = 0.2. Draw xk+1 from q(xk, xk+1).3. Set k ← k + 1 and return to step 2, unless your personal stoppingriterion is satis�ed.Aording to the previous theorem, the sample {xk}Nk=0 should give abetter and better representation of p as N inreases.Hene, we are faing an inverse problem: Given a probability density p,we would like to �nd a kernel q suh that p is its invariant density.Very popular tehnique for onstruting suh a transition kernel is theMetropolis�Hastings algorithm. 393



Metropolis�Hastings algorithmLet us introdue a slightly more general Markov proess: If you areurrently at some x ∈ R
n, either1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or2. move away from x using a transition kernel R(x, y) otherwise.Sine R is a transition kernel, the mapping y 7→ R(x, y) de�nes aprobability density, and thus

∫

Rn

R(x, y)dy = 1, for all x ∈ R
n.Denote by A the event of moving away from x and by ¬A the event ofnot moving, meaning that

P{A} = 1− r(x), P{¬A} = r(x).394



What is the density of Y generated by the above strategy, given X = x?Let B ⊂ R
n be a Borel set and let us write

P{Y ∈ B | X = x} = P{Y ∈ B | X = x,A}P{A}
+ P{Y ∈ B | X = x,¬A}P{¬A}.The probability of arriving in B if we happen to move:

P{Y ∈ B | X = x,A} =

∫

B

R(x, y)dy.Arriving in B without moving happens only if x ∈ B, i.e.,

P{Y ∈ B | X = x,¬A} = χB(x) :=







1, if x ∈ B,
0, if x 6∈ B.
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To sum up, the probability of reahing B from x is

P{Y ∈ B | X = x} = (1− r(x))
∫

B

R(x, y)dy + r(x)χB(x).Finally, the probability of Y ∈ B is found through marginalization:

P{Y ∈ B} =

∫

P{Y ∈ B | X = x}p(x)dx

=

∫

p(x)

(∫

B

(1− r(x))R(x, y)dy

)

dx+

∫

χB(x)r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx

)

dy +

∫

B

r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y)

)

dy.
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By de�nition
P{Y ∈ B} =

∫

B

π(y)dy,and omparing this with the above formula, we see that the probabilitydensity of Y must be
π(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y).Our ultimate goal is to �nd a kernel R and a probability r suh that

π(y) = p(y), that is,
p(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y),or, equivalently,

(1− r(y))p(y) =

∫

p(x)(1− r(x))R(x, y)dx.
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Denote
K(x, y) = (1− r(x))R(x, y),and observe that, sine R is a transition kernel,

∫

K(y, x)dx = (1− r(y))
∫

R(y, x)dx = 1− r(y).The ondition at the bottom of the previous slide an thus be written as

∫

p(y)K(y, x)dx =

∫

p(x)K(x, y)dx,whih is alled the balane equation. This ondition is satis�ed, inpartiular, if the integrands are equal, i.e.,
p(y)K(y, x) = p(x)K(x, y).This ondition is known as the detailed balane equation. TheMetropolis�Hastings algorithm is simply a tehnique for �nding a kernel

K that satis�es the detailed version of the balane equation.398



Start by seleting a andidate generating kernel q(x, y), then de�ne

α̃(x, y) = min

{

1,
p(y)q(y, x)

p(x)q(x, y)

}

,and �nally set
K(x, y) = α̃(x, y)q(x, y).A simple alulation shows that suh K satis�es the detailed balaneequation, i.e.,

p(y)α̃(y, x)q(y, x) = p(x)α̃(x, y)q(x, y).To onvine yourself, take note that for any x, y ∈ R
n either

α̃(x, y) =
p(y)q(y, x)

p(x)q(x, y)
and α̃(y, x) = 1,or

α̃(x, y) = 1 and α̃(y, x) =
p(x)q(x, y)

p(y)q(y, x)
.
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The atual Metropolis�Hastings algorithm for drawing samples is asfollows:1. Given x, draw y using the transition kernel q(x, y).2. Calulate the aeptane ratio,
α(x, y) :=

p(y)q(y, x)

p(x)q(x, y)
.3. Flip the α-oin: Draw t ∼ Uniform([0, 1]). If α > t, aept y.Otherwise stay put at x.
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Does the above algorithm really work? It is not quite obvious...Yes, it does. Aording to our onstrution, the Markov proessintrodued at the beginning of this setion, i.e., the one involving R and

r, is with the hoie
K(x, y) = (1− r(x))R(x, y) = α̃(x, y)q(x, y)suh that p is its invariant density. Note, in partiular, that for thishoie, it holds that

P{A and Y ∈ B |X = x} = (1− r(x))
∫

B

R(x, y)dy =

∫

B

K(x, y)dy,whih is something that the atual algorithm should also satisfy. In otherwords, everything is OK if for the above introdued algorithm theprobability that �the move is aepted and Y ∈ B� under X = x is givenby this same formula. (It does not matter what happens to Y if themove is not aepted, beause then we do not move in any ase.)401



For the atual algorithm we have

P{A | Y = y, X = x} = min{1, α(x, y)} = α̃(x, y)and

P{Y ∈ B | X = x} =

∫

B

q(x, y)dy.Hene, it follows in the ase of the algorithm that
P{A and Y ∈ B |X = x} = α̃(x, y)

∫

B

q(x, y)dy =

∫

B

K(x, y)dy,whih means that everything really works as it should.
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ExampleConsider sampling in R
2 from the density

π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

.
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We use white noise random walk proposal

q(x, y) =
1

√

2πγ2
exp

(

− 1

2γ2
‖x− y‖2

)

.

Note that now the transition kernel is symmetri, i.e.,

q(x, y) = q(y, x),and hene

α(x, y) =
π(y)

π(x)
.
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γ = 0.02
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γ = 0.7
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γ = 4
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Aeptane rates:
γ = 0.02: 95.6 %
γ = 0.7: 24.5 %
γ = 4: 1.4 %
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Sample histories:
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Metropolis�Hastings algorithm (ontinued)Reall the Metropolis�Hastings algorithm for drawing samples from agiven probability density p : R
n → R+.1. Choose x0 ∈ R

n. Set k = 0.2. Given xk, draw y using the transition kernel q(xk, y) of your hoie.3. Calulate the aeptane ratio,
α(xk, y) :=

p(y)q(y, xk)

p(xk)q(xk, y)
.4. Flip the α-oin: Draw t ∼ Uniform([0, 1]). If α > t, set xk+1 = y.Otherwise, stay put at xk, i.e., set xk+1 = xk.5. Set k ← k + 1 and return to Step 2, unless your stopping riterion issatis�ed.The onstruted sample {xk}Nk=0 should represent p if N is large enough.411



Adapting the Metropolis-Hastings samplerWith the white noise random walk proposal density (used in thenumerial example of the previous leture), the sampler does not takeinto aount the form of the posterior density.However, the shape of the density an be taken into aount whendesigning the proposal density, in order to minimize the number of`wasted proposals'. In high-dimensional setting, this beomes espeiallyuseful if the posterior density is highly anisotropi, i.e., if the posterior isstrethed in some diretions.The proposal distribution an be updated while the sampling algorithmmoves around the posterior density. This proess is often alledadaptation.
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Gibbs samplerLet us �rst onsider some notational details:

• I = {1, 2, . . . , n} is the index set of R
n.

• I =
⋃m

j=1 Im is a partitioning of the index set into disjointnonempty subsets.
• The number of elements in Ij is denoted by kj ; k1 + · · ·+ km = n.

• We partition R
n as R

n = R
k1 × · · · × R

km , and orrespondingly

x = [xI1
; . . . ;xIm

] ∈ R
n, xIj

∈ R
kj ,where xi ∈ R is a omponent of the vetor xIj

if and only if i ∈ Ij .In pratie, it often holds that kj = 1 for all j = 1, . . . ,m, meaning that

m = n and xIj

is just the jth omponent of the original vetor x.
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Transition kernel for the Gibbs samplerSuppose that we are still aiming at sampling some given probabilitydensity p : R
n → R+, and reall the Markov proess onsidered at theprevious leture: If you are urrently at some x ∈ R

n, either1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or2. move away from x using a transition kernel R(x, y) otherwise.Reall also that we made the de�nition
K(x, y) = (1− r(x))R(x, y).For the Gibbs sampler, we hoose r(x) = 0 for all x ∈ R

n, i.e., moving isobligatory, and de�ne

K(x, y) = R(x, y) =
m∏

i=1

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
),
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where the onditional densities are de�ned in the natural way basedon p, i.e.,
p(yIi

| yI1
, . . . , yIi−1

, xIi+1
, . . . , xIm

) =
p(yI1

, . . . , yIi
, xIi+1

, . . . , xIm
)

∫

Rki
p(yI1

, . . . , yIi
, xIi+1

, . . . xIm
))dyIi

.

Suh a transition kernel K does not, in general, satisfy the detailedbalane equation, i.e.,
p(y)K(y, x) 6= p(x)K(x, y),but it satis�es the (standard) balane equation,

∫

Rn

p(y)K(y, x)dx =

∫

Rn

p(x)K(x, y)dx,whih is a su�ient ondition for p being an invariant density of theabove introdued Markov proess. (See the slides of the previous leturefor the details.) 415



Proof: Consider �rst the left-hand side of the balane equation.Due to the basi properties of probability densities, we have

∫

Rki

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)dxIi

= 1for all i = 1, . . . ,m. By integrating the kernel K(y, x) over R
km , wethus get

∫

Rkm

K(y, x)dxIm
=

∫

Rkm

m∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)dxIm

=
m−1∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)

∫

Rkm

p(xIm
|xI1

, . . . , xIm−1
)dxIm

=
m−1∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
).
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Indutively, by always integrating with respet to the last blok of x withrespet to whih we have not yet integrated, we easily obtain thataltogether
∫

Rn

K(y, x)dx = 1,whih in turn implies that
∫

Rn

p(y)K(y, x)dx = p(y)

∫

Rn

K(y, x)dx = p(y).
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Next, we onsider the right-hand side of the balane equation. Sine

K(x, y) is independent of xI1

and due to the de�nition of marginalprobability densities, we have

∫

Rk1

p(x)K(x, y)dxI1
= K(x, y)

∫

Rk1

p(x)dxI1
=: K(x, y)p(xI2

, . . . , xIm
).By substituting the de�nition of K in the above formula, we see that

∫

Rk1

p(x)K(x, y)dxI1
= K(x, y)p(xI2

, . . . , xIm
)

=

(
m∏

i=2

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
)

)

× p(yI1
|xI2

, . . . , xIm
)p(xI2

, . . . , xIm
)

=

(
m∏

i=2

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
)

)

p(yI1
, xI2

, . . . , xIm
).
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Next, we integrate with respet to xI2

over R
k2 . By denoting

ai = p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
), i = 2, . . . ,m,we may write

∫

Rk2

∫

Rk1

p(x)K(x, y)dxI1
dxI2

=

∫

Rk2

m∏

i=2

ai p(yI1
, xI2

, . . . , xIm
)dxI2

=

m∏

i=3

ai p(yI2
| yI1

, xI3
, . . . , xIm

)

∫

Rk2

p(yI1
, xI2

, . . . , xIm
)dxI2

=
m∏

i=3

ai p(yI2
| yI1

, xI3
, . . . , xIm

)p(yI1
, xI3

, . . . , xIm
)

=
m∏

i=3

ai p(yI1
, yI2

, xI3
, . . . , xIm

).
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We an ontinue indutively integrating over the remaining bloks

xI3
, . . . , xIm

in turns, whih eventually results in

∫

Rn

p(x)K(x, y)dx = p(yI1
, . . . , yIm

) = p(y),and the proof is omplete. �
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Gibbs sampler algorithm1. Choose the initial value x0 ∈ R
n and set k = 0.2. Draw the next sample as follows:(a) Set x = xk and j = 1.(b) Draw yIj

∈ R
kj from the kj-dimensional distribution

p(yIj
| yI1

, . . . , yIj−1
, xIj+1

, . . . , xIm
).() If j = m, set y = [yI1

; . . . ; ym] and terminate the inner loop.Otherwise, set j ← j + 1 and return to step (b).3. Set xk+1 = y, inrease k ← k + 1 and return to step 2, unless thehosen stopping riterion is satis�ed.
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Single omponent Gibbs sampler algorithm1. Choose the initial value x0 ∈ R
n and set k = 0.2. Draw the next sample as follows:(a) Set x = xk and j = 1.(b) Draw t ∈ R from the one-dimensional distribution

p(t | y1, . . . , yj−1, xj+1, . . . , xn) ∝ p(y1, . . . , yj−1, t, xj+1, . . . , xn)and set yj = t.() If j = n, set y = [y1, . . . , yn]T and terminate the inner loop.Otherwise, set j ← j + 1 and return to step (b).3. Set xk+1 = y, inrease k ← k + 1 and return to step 2, unless thehosen stopping riterion is satis�ed.
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ExampleConsider again the density
π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

, x ∈ R
2.
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Sample histories for x1 and x2:
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How to judge the quality of a sample?Essential questions:
• What sampling strategy and/or proposal distribution works the best?

• Is the sample big enough?Consider estimates of the form
∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N∑

j=1

f(xj),

and reall that the Central Limit Theorem gives some answers regardingthe onvergene.
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Assume that the variables Yj = f(Xj) ∈ R are mutually independentand identially distributed with E{Yj} = y and var(Yj) = σ2, and de�ne

ỸN =
1

N

N∑

j=1

Yj and ZN =

√
N(ỸN − y)

σ
.

Then, ỸN → E{Y } almost surely (LLN). Moreover, ZN isasymptotially (standard) normally distributed, that is,

lim
N→∞

P{Zn ≤ z} =
1√
2π

∫ z

−∞
exp

(

−1

2
s2
)

ds.Loosely speaking, the above result says that the approximation errorbehaves as

1

N

N∑

j=1

f(xj)−
∫

f(x)π(x)dx ≈ σ√
Nprovided that the samples {xj} are independent.427



Let us have another look at the sample histories orresponding to ourstandard example. First, the Metropolis�Hastings algorithm for the threehoies of γ (the vertial omponent is plotted):
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Clearly, onseutive elements are not independent.428



Then, the Gibbs sampler (both omponents are plotted):
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The results are somewhat better, but there is still some orrelationbetween onseutive elements � espeially for the vertial omponent.429



If every kth sample point is independent, one might expet thedisrepany to behave as 1/
√

N/k =
√

k/N instead of 1/
√
N .Consequently, one should try to hoose the proposal distribution so thatthe orrelation length is as small as possible.Quik visual assessment: Take a look at the sample histories ofindividual omponents. How should they look like?Consider a white noise signal, where the sample points are independentand the sample history looks like a "fuzzy worm". This is something oneould aim at.
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Autoovariane and orrelation lengthDenote by fc(xj) ∈ R, j = 1, . . . , N , the entered sample points, i.e.,

fc(xj) = f(xj)−
1

N

N∑

i=1

f(xi), j = 1, . . . , N.

De�ne the normalized autoovariane of the sample as

γ2
k =

1

γ2
0(N − k)

N−k∑

j=1

fc(xj)fc(xj+k), k ≥ 1,

where γ2
0 = 1

N

∑N
j=1 fc(xj)

2 is the mean energy of the signal.The orrelation length of the sample {f(xj)
}N

j=1

an be estimated basedon the deay of the normalized autoovariane sequene of the sample.
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For a white noise sample, γ2
k ≈ 0 for any k > 0, where the estimate getsbetter as the sample, i.e., N , inreases.We test this hypothesis by drawing two white noise samples (N = 5000and N = 100000) and plotting the funtion k 7→ γ2

k in both ases.
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Normalized autoovariane sequenes for the MH example.

γ = 0.02 γ = 0.7 γ = 4
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Normalized autoovarianes for the Gibbs example;horizontal omponent in blue and vertial in red.
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Hypermodels
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In the statistial framework, the prior densities usually depend on someparameters suh as variane or mean. Typially � or at least thus far�, these parameters are assumed to be known.Some lassial regularization methods an be viewed as onstrution ofestimators based on the posterior density (e.g., Tikhonov regularization).The regularization parameter, whih orresponds to the parameter thatde�nes the prior distribution, is not assumed to be know, but seletedusing, e.g., the Morozov disrepany priniple.What happens if it is not lear how to hoose these `prior parameters' inthe statistial framework?If a parameter is not know, it an be estimated as a part of the statistialinferene problem based on the data. This leads to hierarhial modelsthat inlude hypermodels for the parameters de�ning the prior density.
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Assume that the prior distribution depends on a parameter α whih isnot assumed to be known. Then we write the prior as a onditionaldensity, that is,
πpr(x |α).Assuming we have a hyperprior for α, i.e.,

πhyper(α),we an write the joint distribution of x and α as

π(x, α) = πpr(x |α)πhyper(α).Assuming a likelihood model π(y |x) for the measurement data y, weget the posterior density for x and α, given y, from the Bayes formula:

π(x, α | y) ∝ π(y |x)π(x, α) = π(y |x)π(x |α)πhyper(α).
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In general, the hyperprior density πhyper may depend on somehyperparameter α0. In suh a ase, the main reason for the use of ahyperprior model is that the onstrution of the posterior is assumed tobe more robust with respet to �xing a value for the hyperparameter α0than �xing a value for α.Sometimes α0 an also be treated as a random variable with a respetiveprobability density. Then, we would write
πhyper(α |α0),giving rise to nested hypermodels.
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Example: Hypermodel for a deonvolution problem(Adapted from the textbook by Calvetti and Somersalo, Chapter 10)Consider a one-dimensional deonvolution problem, the goal of whih isto estimate a signal f : [0, 1]→ R from noisy, blurred observationsmodelled as
yi = g(si) =

∫ 1

0

A(si, t)f(t)dt+ e(si), 1 ≤ i ≤ m,where {si}mi=1 ⊂ [0, 1] are the uniformly distributed measurement points,the blurring kernel is de�ned to be
A(s, t) = exp

(

− 1

2ω2
(t− s)2

)

,and the noise is Gaussian, or more preisely e ∼ N (0, σ2I).
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To begin with, we disretize the model as

y = Ax+ e,where A ∈ R
m×n is obtained by approximating the integral with asuitable quadrature rule, and the vetor x ontains the values of theunknown signal at the disretization points {tj}nj=0 that we have hosento be distributed uniformly over the interval [0, 1]. To be more preise,

xj = f(tj), tj =
j

n
, 0 ≤ j ≤ n.For simpliity we assume it is known that f(0) = x0 = 0, and de�ne theatual unknown x to be

x =








x1...
xn







∈ R

n.

441



Assume that as prior information we know that the signal is ontinuousexept for a possible jump disontinuity at a known loation.Let us start with a Gaussian �rst order smoothness prior,

πpr(x) ∝ exp

(

− 1

2γ2
‖Lx‖2

)

,where L is a �rst order �nite di�erene matrix (reall that x0 = 0),

L =










1

−1 1. . . . . .
−1 1










∈ R
n×n.
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It is easy to see that L is invertible and

L−1 =










1

1 1... . . . . . .

1 . . . 1 1










is a lower triangular matrix. Sine 1
γL is the whitening matrix of

X ∈ R
n distributed aording to πpr(x) � see the twelfth leture �, itfollows that

X = L−1W, W ∼ N (0, γ2I).Due to the partiular shape of L−1, this relation an alternatively begiven as a Markov proess:

Xj = Xj−1 +Wj , Wj ∼ N (0, γ2), j = 1, . . . , n, X0 = 0.443



Next, we aim at �ne-tuning the the above smoothness prior so that itallows a jump disontinuity over the interval [tk−1, tk].To this end, we modify the above Markov model (only) at j = k bysetting
Xk = Xk−1 +Wk, Wk ∼ N

(

0,
γ2

δ2

)

,where δ < 1 is a parameter ontrolling the variane of Wk, i.e., theexpeted size of the jump.Let us walk the the above steps bakwards: It is easy to see that thisnew Markov proess an alternatively be given as
X = L−1(D1/2)−1W, W ∼ N (0, γ2I),where

D1/2 = diag(1, 1, . . . , δ, . . . , 1, 1) ∈ R
n×nis de�ned so that (D1/2)−1 sales the kth omponent of W by 1/δ.444



In onsequene, after the above modi�ation in the kth step of theMarkov proess de�ning X , the random variable D1/2LX is distributedaording to N (0, γ2I), and thus we have introdued the �ne-tuned`jump prior'
πpr(x) ∝ exp

(

− 1

2γ2
‖D1/2Lx‖2

)

.

Let us draw samples from this kind of a prior density. We set n = 150and γ = 0.1, meaning that we expet inrements of the order 0.1 atmost of the subintervals. As an exeption, at two known loations

t ≈ 0.4 and t ≈ 0.8 we use δ < 1 at the orresponding diagonal elementof D1/2, in antiipation of a jump of the order γ/δ = 0.1/δ.
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Random draws from the jump disontinuity prior with two di�erent values of δ.

0 0.5 1
−4

−2

0

2

4
δ=0.1

0 50 100 150
−15

−10

−5

0

5

10
δ=0.02

446



As the additive noise was assumed to be Gaussian, the likelihood densityorresponding to the onsidered measurement is

π(y |x) ∝ exp

(

− 1

2σ2
‖y −Ax‖2

)

,and due to the Bayes formula, the posterior density an thus be writtenas

π(x | y) ∝ exp

(

− 1

2σ2
‖y −Ax‖2 − 1

2γ2
‖D1/2Lx‖2

)

.Using the results for Gaussian densities from previous letures, the meanof the posterior, whih is also the MAP and the CM estimate, an bewritten expliitly as

xCM = xMAP =

(
σ2

γ2
LT(D1/2)TD1/2L+ ATA

)−1

ATy.
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The original signal f(t) and the measurement data (ω ≈ 0.05):
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Posterior estimates for f without the disontinuity model (i.e., with themere �rst order smoothness prior) and with the disontinuity model withknown loations and jump sizes (γ = 0.1):
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Next we hoose γ = 0.01 that orresponds to inrements of the order of

0.01 at eah subinterval, and sale δ aordingly so that it is inaordane with jump sizes of the order 1.
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Assume next that the loations and expeted sizes of the jumps are notknown, but we expet a slowly varying signal that ould have a fewjumps at unknown loations.We modify the Markov model to allow di�erent inrements at di�erentpositions:
Xj = Xj−1 +Wj , Wj ∼ N

(

0,
1

θj

)

, θj > 0, j = 1, . . . , n.The orresponding prior model an be obtained in the same way asabove:

πpr(x) ∝ exp

(

−1

2
‖D1/2Lx‖2

)

,where this time around

D1/2 = diag(θ
1/2
1 , θ

1/2
2 , . . . , θ1/2

n ).If we knew the vetor θ = [θ1, . . . , θn]T, we ould proeed as previously.451



If θ ∈ R
n is not know, it an be onsidered as a random variable and itsestimation an be inluded as a part of the inferene problem. To thisend, we need to write the onditional density

πpr(x | θ).In this ase, the normalizing onstant of the density πpr(x | θ) is nolonger a onstant, but depends on the random variable θ and thusannot be ignored.Reall the probability density of a n-variate Gaussian distribution:

π(z) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
zTΓ−1z

)

,where the mean is assumed to be zero.
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In our ase, Γ = (LTDL)−1, where D = diag(θ) ∈ R
n×n. Reall thatthe determinant of a triangular matrix is the produt of its diagonalelements, meaning that det(L) = det(LT) = 1. Moreover, thedeterminant of an inverse matrix is the inverse of the determinant of theoriginal matrix. Hene, it holds that

det(Γ)−1 = det(LTDL) = det(LT) det(D) det(L) =
n∏

j=1

θj ,and the properly normalized density beomes
πpr(x | θ) =

(∏n
j=1 θj

(2π)n

)1/2

exp

(

−1

2
‖D1/2Lx‖2

)

=
1

(2π)n/2
exp



−1

2
‖D1/2Lx‖2 +

1

2

n∑

j=1

log θj

)



 .
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Next we need to hoose a hyperprior density for θ. Qualitatively, weshould allow some omponents of θ to deviate strongly from the`average'.We deide to use an ℓ1-type impulse prior with a positivity onstraint:

πhyper(θ) ∝ π+(θ) exp



−γ
2

n∑

j=1

θj





where π+(θ) is one if all omponents of θ are positive, and zerootherwise, and γ > 0 is a hyperparameter.
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The posterior distribution an then be written as

π(x, θ | y) ∝ π(y |x)π(x, θ) = π(y |x)π(x | θ)πhyper(θ)

∝ exp



− 1

2σ2
‖y −Ax‖2 − 1

2
‖D1/2Lx‖2 − γ

2

n∑

j=1

θj +
1

2

n∑

j=1

log θj





if all omponents of θ are positive, and π(x, θ | y) = 0 otherwise. It isstraightforward to see that the orresponding MAP estimate is theminimizer of the funtional
F (x, θ) =

∥
∥
∥
∥
∥
∥





1
σA

D1/2L



x−





1
σy

0





∥
∥
∥
∥
∥
∥

2

+ γ
n∑

j=1

θj −
n∑

j=1

log θj .

over (x, θ) ∈ R
n × R

n
+.
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We apply a two stage minimization algorithm:Choose some initial guesses for x and θ. Then, repeat the following twosteps until onvergene is ahieved:1. Keep θ �xed and update x to be the least squares solution of





1
σA

D1/2L



x =





1
σy

0



 ,

where D = diag(θ).2. Fix x and update θ by minimizing F (x, ·) with respet to theseond variable. An easy alulation shows that this minimizer anbe given omponentwise as
θj =

1

w2
j + γ

, j = 1, . . . , n,where w = Lx ∈ R
n is the vetor of inrements orresponding to x.456



MAP estimates for x and θ provided by the above alternating algorithmwith γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n. The data is the same as depited on page 448.
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Another example: The original signal f(t) and the measurement data.
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MAP estimates for x and θ provided by the above alternating algorithmwith γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n.
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The End.
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