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0 Pra
ti
al issues
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Information and materials

• The main information 
hannel of the 
ourse is the homepage:https://noppa.tkk.fi/noppa/kurssi/mat-1.3626/ .

• The text book is �J. Kaipio and E. Somersalo, Statisti
al andComputational Inverse Problems, Springer, 2005� (mainly Chapters2 and 3).

• Le
ture notes and exer
ise papers will be posted on the 
oursehomepage.
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Exer
ises

• The �rst exer
ise session will held on Friday, January 21, i.e., theday after tomorrow.
• Ea
h week there is one home assignment: The solution to theassignment in the exer
ise paper of the week m is to be returned tothe 
ourse assistant Stratos Staboulis/Matti Leinonen before theexer
ise session of the week m+ 1. (For example, the solution tothe home assignment of the �rst exer
ise paper should be returnedbefore the exer
ise session on Friday, January 28.)
• The 
ourse assistant will demonstrate `model' solutions to theexer
ises.
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EvaluationThe 
ourse grades will be based on the weekly home assignments and ahome exam.
• The home assignments 
onstitute 25% of the grade. Ea
h returnedsolution is given 0− 3 points; at the end of the 
ourse, the obtainedpoints will be summed and s
aled appropriately.

• The home exam 
onstitutes 75% of the grade. It will be held afterthe le
tures have ended � the exa
t timing will be agreed uponlater on. There will be a few, more extensive assignments that mustbe solved within a given time period (e.g., within one week).
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TimetableThe 
ourse extends over nine or ten weeks (plus le
ture breaks).

• The �rst half will 
on
entrate on traditional regularizationte
hniques (Staboulis as the 
ourse assistant).

• The se
ond half will examine inverse problems from a statisti
alview point (Leinonen as the 
ourse assistant).
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1 What is an ill-posed problem?
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Well-posed problemsJa
ques Salomon Hadamard (1865-1963):1. A solution exists.2. The solution is unique.3. The solution depends 
ontinuously on the data, in some reasonabletopology.
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Ill-posed problemsNuutti Hyvönen: The ill-posed problems are the 
omplement of thewell-posed problems in the spa
e of all problems.Examples:
• Interpolation.
• Finding the 
ause of a known 
onsequen
e =⇒ inverse problems.

• Almost all problems en
ountered in everyday life.When solving an ill-posed or inverse problem, it is essential to use allpossible prior and expert knowledge about the possible solutions.
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An example: Heat distribution in an insulated rodLet us 
onsider the problem
ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π),where u(·, t) is the heat distribution at the time t > 0, f is the initialheat distribution, and the boundary 
onditions indi
ate that the heat
annot �ow out of the 'rod' [0, π].Forward problem: Determine the `�nal' distribution u(·, T ) ∈ L2(0, π),

T > 0, if the initial distribution f ∈ L2(0, π) is known.Inverse problem: Determine the initial distribution f ∈ L2(0, π), if the(noisy) `�nal' distribution u(·, T ) =: w ∈ L2(0, π) is known.
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Forward problemThe solution to the forward problem 
an be given expli
itly:

u(x, T ) =
∞∑

n=0

f̂ne
−n2T cos(nx),

where {f̂n}∞n=0 ⊂ R are Fourier 
osine 
oe�
ients of the initial heatdistribution f , i.e., f =
∑∞

n=0 f̂n cos(nx) in the sense of L2(0, π).It is relatively easy to see that the solution operator

ET : f 7→ u(·, T ), L2(0, π)→ L2(0, π)satis�es the following 
onditions:
• ET is linear, bounded and 
ompa
t.
• ET is inje
tive, i.e., Ker(ET ) = {0}.
• Ran(ET ) is dense in L2(0, π). 11



Inverse problemSolving the inverse problem for a general �nal heat distribution

w ∈ L2(0, π) 
orresponds to inverting the 
ompa
t operator

ET : L2(0, π)→ L2(0, π), whi
h is obviously impossible.The unbounded solution operator
E−1

T : Ran(ET )→ L2(0, π)is, however, well-de�ned. In other words, the inverse problem has aunique solution if w = ET f for some f ∈ L2(0, π), i.e., themeasurement 
ontains no noise.Summary:

• If w ∈ Ran(ET ), the third Hadamard 
ondition is not satis�ed.

• If w /∈ Ran(ET ), none of the Hadamard 
onditions is satis�ed.(Due to noise et
., the latter 
ase is usually the valid one in pra
ti
e.)12



Question: Should one then ignore the ill-posed inverse problem?

Answer: No. The available measurement always 
ontains someinformation about the initial heat distribution.
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Heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Another heat distribution at t = 0, 0.01, 0.1, 1 and 10.
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Comparison of the two at t = 0, 0.01, 0.1, 1 and 10.
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2 Classi
al regularization methods
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2.1 Fredholm equation
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Separable Hilbert spa
eA ve
tor spa
e H is a real inner produ
t spa
e if there exists a mapping

〈·, ·〉 : H ×H → R satisfying1. 〈x, y〉 = 〈y, x〉 for all x, y ∈ H.2. 〈ax1 + bx2, y〉 = a〈x1, y〉+ b〈x2, y〉 for all x1, x2, y ∈ H, a, b ∈ R.3. 〈x, x〉 ≥ 0, and 〈x, x〉 = 0 ⇔ x = 0.Furthermore, H is a separable real Hilbert spa
e if, in addition,1. H is 
omplete with respe
t to the norm ‖ · ‖ =
√

〈·, ·〉.2. There exists a 
ountable orthonormal basis {ϕn} of H with respe
tto the inner produ
t 〈·, ·〉. This means that
〈ϕj , ϕk〉 = δjk and x =

∑

n

〈x, ϕn〉ϕn for all x ∈ H.
19



Fredholm equationLet A : H1 → H2 be a 
ompa
t linear operator between the realseparable Hilbert spa
es H1 and H2. In the �rst half of this 
ourse, wemainly 
on
entrate on the problem of �nding x ∈ H1 satisfying theequation
Ax = y, (1)where y ∈ H2 is given. (In this setting, 
ompa
t operators are the
losure of the �nite-dimensional operators, i.e., loosely speakingmatri
es, in the operator topology.)Examples:

• In the example of Se
tion 1, we have A = ET and
H1 = H2 = L2(0, π).

• The most important 
ase on this 
ourse is H1 = R
n, H2 = R

m and

A ∈ R
m×n is a matrix. 20



2.2 Trun
ated singular value de
omposition

21



Orthogonal de
ompositionsLet A∗ : H2 → H1 be the adjoint operator of A : H1 → H2, i.e.,

〈Ax, y〉 = 〈x,A∗y〉 for all x ∈ H1, y ∈ H2.We have the orthogonal de
ompositions

H1 = Ker(A)⊕ (Ker(A))⊥ = Ker(A)⊕ Ran(A∗),

H2 = Ran(A)⊕ (Ran(A))⊥ = Ran(A)⊕Ker(A∗),where the �bar� denotes the 
losure of a set and
Ker(A) = {x ∈ H1 | Ax = 0},
Ran(A) = {y ∈ H2 | y = Ax for some x ∈ H1},

(Ker(A))⊥ = {x ∈ H1 | 〈x, z〉 = 0 for all z ∈ Ker(A)}, etc.
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Chara
terization of 
ompa
t operatorsThere exist (possible 
ountably in�nite) orthonormal sets of ve
tors

{vn} ⊂ H1 and {un} ⊂ H2, and a sequen
e of positive numbers {λn},

λk ≥ λk+1 and limn→∞ λn = 0 in the 
ountably in�nite 
ase, su
h that

Ax =
∑

n

λn〈x, vn〉un for all x ∈ H1 (2)and, in parti
ular,
Ran(A) = span{un} and (Ker(A))⊥ = span{vn}.(Conversely, if A : H1 → H2 has this kind of de
omposition, it is
ompa
t.)The system {vn, un, λn} is 
alled a singular system of A, and (2) is asingular value de
omposition (SVD) of A. (Note that 1 ≤ n ≤ ∞ or

1 ≤ n ≤ N <∞ depending on rank(A) := dim(Ran(A)).)23



Solvability of Ax = yIt follows from the orthonormality of {un} that

P : H2 → Ran(A), y 7→
∑

n

〈y, un〉un,is an orthogonal proje
tion, i.e., P 2 = P and Ran(P ) ⊥ Ran(I − P ).The equation Ax = y has a solution if and only if

y = Py and
∑

n

1

λ2
n

|〈y, un〉|2 < ∞. (3)

In 
ase that (3) is satis�ed, all solutions of Ax = y are of the form

x = x0 +
∑

n

1

λn
〈y, un〉vnfor some x0 ∈ Ker(A). 24



Intuitive interpretation of the solvability 
onditions:

• The �rst 
ondition, y = Py, states that y 
annot have 
omponentsin the orthogonal 
omplement of Ran(A) if y = Ax.

• The se
ond 
ondition, i.e., the 
onvergen
e of the series

∑

n

1

λ2
n

|〈y, un〉|2,

is redundant if rank(A) <∞, in whi
h 
ase Ran(A) = Ran(A). Onthe other hand, if rank(A) =∞, this 
ondition is equivalent toasking that the norm of
x = x0 +

∞∑

n=1

1

λn
〈y, un〉vn, x0 ∈ Ker(A),

is �nite, i.e., the `potential solutions' belong to H1.25
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ond le
ture, January 21, 2011.
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2.2 Trun
ated singular value de
omposition(
ont.)
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Summary of the previous le
tureThe problem: Find x ∈ H1 that satis�es the equation

Ax = y,where y ∈ H2 is given and A : H1 → H2 is a 
ompa
t linear operator.Singular value de
omposition (SVD):
Ax =

∑

n

λn〈x, vn〉un for all x ∈ H1.

The solutions: If solutions exist, they are of the form
x = x0 +

∑

n

1

λn
〈y, un〉vn,where x0 ∈ Ker(A).
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Solvability 
onditions: There exists a solution if and only if

y = Py and
∑

n

1

λ2
n

|〈y, un〉|2 < ∞,
where P is a proje
tion onto Ran(A) = span{un}.The natural way to 
ir
umvent problems with the �rst solvability
ondition is to 
onsider the proje
ted equation

Ax = PAx = Pyinstead of Ax = y. However, this does not help with the se
ond
ondition sin
e there is no guarantee that
∑

n

1

λ2
n

|〈Py, un〉|2 < ∞for a general y ∈ H2, if rank(A) =∞, i.e., if Ran(A) is in�nite-dimensional. 29



Trun
ated singular value de
omposition (TSVD)Let us de�ne a family of �nite-dimensional orthogonal proje
tions by

Pk : H2 → span{u1, . . . , uk}, y 7→
k∑

n=1

〈y, un〉un.Due to the orthogonality of {un},
P (Pky) =

∑

n

〈Pky, un〉un =
k∑

n=1

〈y, un〉un = Pky,and, moreover,

∑

n

1

λ2
n

|〈Pky, un〉|2 =
k∑

n=1

1

λ2
n

|〈y, un〉|2 <∞.(Note that one must 
hoose k ≤ rank(A) if the latter is �nite.)30



In 
onsequen
e, the problem

Ax = Pky. (4)satis�es the solvability 
onditions (3). The 
orresponding solutions aregiven by
x = x0 +

∑

n

1

λn
〈Pky, un〉vn = x0 +

k∑

n=1

1

λn
〈y, un〉vn ∈ H1.

By the trun
ated SVD solution of Ax = y for a given k ≥ 1, we meanthe xk ∈ H1 that satis�es (4) and is orthogonal to the subspa
e Ker(A).Sin
e {vn} span (Ker(A))⊥, it easily follows that su
h xk is unique, hasthe smallest norm of the solutions to (4), and is given by
xk =

k∑

n=1

1

λn
〈y, un〉vn.
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An example: Heat distribution in a rod (revisited)Re
all the heat equation
ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).The forward solution operator
ET : f 7→ u(·, T ), H1 = L2(0, π)→ L2(0, π) = H2is 
hara
terized by

ET : vn 7→ λnvn,where {vn}∞n=0 = {
√

1
π} ∪ {

√
2
π cos(n ·)}∞n=1 form an orthonormal basisof L2(0, π), and λn = λn(T ) = e−n2T > 0 
onverges to zero as n→∞.32



In 
onsequen
e, we have

ET f =
∞∑

n=0

λn〈f, vn〉vn,where the inner produ
t of L2(0, π) is de�ned in the usual way:

〈f, g〉 =

∫ π

0

fg dx, f, g ∈ L2(0, π).In this 
ase un = vn (be
ause ET is self-adjoint). Sin
e {vn}∞n=0 are anorthonormal basis for L2(0, π), we have
(Ker(ET ))⊥ = Ran(ET ) = L2(0, π),i.e., ET is inje
tive and has a dense range, as mentioned already earlier.In parti
ular, the proje
tion onto the 
losure of the range of ET is theidentity operator, i.e., P = I. 33



We thus dedu
e that there exists f ∈ L2(0, π) su
h that

ET f = w,for a given w ∈ L2(0, π), if and only if

∞∑

n=0

1

λ2
n

|〈w, vn〉|2 =

∞∑

n=0

en4T 2 |〈w, vn〉|2 < ∞,

whi
h is a very restri
tive 
ondition and demonstrates why this inverseproblem is extremely ill-posed.Finally, note that the trun
ated SVD solution to this inverse problem is

fk =

k∑

n=0

1

λn
〈w, vn〉vn =

k∑

n=0

en2T 〈w, vn〉vn, k ≥ 0.
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The spe
ial 
ase: H1 = R
n and H2 = R

mLet H1 = R
n and H2 = R

m, whi
h means that

Ax = yis a matrix equation or, in other words, a system of linear equations. Inparti
ular, A ∈ R
m×n.Sin
e all operators of �nite rank, i.e., with �nite-dimensional range, are
ompa
t, we have the representation

Ax =

p
∑

j=1

λj(x
Tvj)uj =

p
∑

j=1

λjuj(v
T
j x), p ≤ min{n,m},

where {vj}pj=1 ⊂ R
n and {uj}pj=1 ⊂ R

m are sets of orthonormal ve
torsand {λj}pj=1 are positive numbers su
h that λj ≥ λj+1. (Note that

p = rank(A).)How 
an one write this de
omposition in a neat matrix form?35



Let us introdu
e, e.g., by Gram�S
hmidt pro
ess, 
omplementary sets oforthonormal ve
tors {vj}nj=p+1 and {uj}mj=p+1, su
h that the 
ompletedsystems {vj}nj=1 and {uj}mj=1 are orthonormal basis for R
n and R

m,respe
tively. Moreover, we set λj = 0 for j = p+ 1, . . . ,min{n,m}.Next, we de�ne three auxiliary matri
es:

V = [v1, . . . , vn] ∈ R
n×n,

U = [u1, . . . , um] ∈ R
m×m,

Λ = diag(λ1, . . . , λmin{n,m}) ∈ R
m×n.Here, Λ ∈ R

m×n is a diagonal matrix with the elements

λ1, . . . , λmin{n,m} on its diagonal; if m > n (resp. n > m), there are

m− n empty rows (resp. n−m empty 
olumns) at the bottom of Λ(resp. at the right end of Λ). Note that due to the orthonormality of

{vj} and {uj}, the matri
es V and U are orthogonal:
V TV = V V T = I and UTU = UUT = I.36



A simple 
omputation shows that

UΛV Tx =

p
∑

j=1

λjuj(v
T
j x) = Ax

for all x ∈ R
n. Hen
e, we have the de
omposition

A = UΛV T.This is what we 
all the SVD in the 
ase of matri
es in R
m×n.In parti
ular, this is how Matlab understands the SVD.
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Note, in parti
ular, that the singular values {λj}min{n,m}
j=1 are justnon-negative � earlier they were assumed to be positive �, and

Ran(A) = span{uj | 1 ≤ j ≤ p},
Ker(A) = span{vj | p+ 1 ≤ j ≤ n},

(Ran(A))⊥ = span{uj | p+ 1 ≤ j ≤ m},
(Ker(A))⊥ = span{vj | 1 ≤ j ≤ p}.
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Trun
ated SVD for a matrix A ∈ R
m×nThe trun
ated SVD solution, i.e., the solution of

Ax = Pky and x ⊥ Ker(A), 1 ≤ k ≤ p,where Pk → span{u1, . . . , uk} is an orthogonal proje
tion, is given inthe matrix framework by
xk =

k∑

j=1

1

λj
〈y, uj〉vj =

k∑

j=1

1

λj
vj(u

T
j y) = V Λ†

kU
Ty.

Here, Λ†
k ∈ R

n×m is a diagonal matrix, with min{m,n} number ofnon-negative elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on its diagonal.
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For the largest possible 
ut-o� k = p, the matrix

A† := A†
p = V Λ†

pU
T =: V Λ†UTis 
alled the Moore�Penrose pseudoinverse. It follows from the abovematerial that x† = A†y is the solution of the proje
ted equation

Ax = Ppy = Py,where P : R
m → R

m is, on
e again, the orthogonal proje
tion onto

Ran(A). However, sin
e the smallest non-zero singular value λp istypi
ally extremely small in inverse problems, the use of pseudoinverse isoften very sensitive to ina

ura
ies in the data y.
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An example: Heat distribution in a rod (revisited)Re
all on
e again the heat equation

ut = uxx in (0, π)× R+,

ux(0, ·) = ux(π, ·) = 0 on R+,

u(·, 0) = f on (0, π).Our plan is to dis
retize the dependen
e on the spatial variable x, andthen investigate the properties of the 
orresponding inverse problemnumeri
ally.To begin with, we introdu
e the step size h = π/100 and the grid points

xj = jh, j = 0, . . . , 100. Furthermore, we denote Uj(t) = u(xj , t).
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We approximate the se
ond derivative of u with respe
t to x at thepoint (xj , t) by the di�eren
e rule:

uxx(xj , t) ≈
1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 1 ≤ j ≤ 99.Furthermore, we dis
retize the boundary 
onditions by requiring that

ux(0, t) ≈ 1

h
(U1(t)− U0(t)) = 0 =

1

h
(U100(t)− U99(t)) ≈ ux(π, t).By solving this for U0(t) and U100(t) and substituting into the pre
edingdi�eren
e rule, we obtain altogether that

uxx(x1, t) ≈ 1

h2
(−U1(t) + U2(t)) ,

uxx(xj , t) ≈ 1

h2
(Uj−1(t)− 2Uj(t) + Uj+1(t)) , 2 ≤ j ≤ 98,

uxx(x99, t) ≈ 1

h2
(U98(t)− U99(t)) .
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Denoting U(t) = (U1(t), . . . , U99(t))
T and F = (f(x1), . . . , f(x99))

Tand plugging the above approximations into the heat equation, we endup with a set of ordinary di�erential equations:

U ′(t) = B U(t), t ∈ R+,

U(0) = F,where B ∈ R
99×99 is a 
ertain tridiagonal matrix (see next slide).The forward solution 
orresponding to this spa
e-dis
retized problem 
anbe given with the help of the matrix exponent fun
tion as

U(T ) = AF,where A = A(T ) = eTB and T > 0.
43



In Matlab, the matri
es B and A = eTB 
an be formed by the followings
ript, whi
h also forms the SVD and plots the singular values for A:T = 0.1; % sayN = 100;h = pi/N;B = diag(ones(N-2,1),-1) - 2*eye(N-1) + diag(ones(N-2,1),1);B(1,1) = -1; % the left boundary 
onditionB(N-1,N-1) = -1; % the right boundary 
onditionB = B/h^2;A = expm(T*B);[U S V℄ = svd(A); % SVDsemilogy(diag(S), 'LineWidth', 2);
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Let us next form a `wedge fun
tion', whi
h serves as the initial heatdistribution, and 
ompute the 
orresponding �nal distribution at

T = 0.1:x = linspa
e(h,pi-h,N-1); % the grid pointsa = 40/3/pi; b1 = -8/3; b2 = 20/3; % 
oeffi
ientsf = [a*x(1:35) + b1, -a*x(36:end) + b2℄';ind = f > 0;f = f.*ind;w = A*f; % final distributionplot(x, f, 'k', 'LineWidth', 2);hold onplot(x, w, 'r', 'LineWidth', 2);axis([0, pi, 0, 2.1℄)hold off
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Let us be a bit silly and try to re
over the initial heat distribution byinverting A:f_stupid = A\w;plot(x, f_stupid, 'LineWidth', 2);whi
h results in a 
atastrophe as demonstrated on the next slide. This isnot surprising sin
e writingrank(A)in Matlab, gives the value 18. In other words, from Matlab's numeri
alpoint of view, A has only 18 linearly independent 
olumns � inparti
ular, A is not (numeri
ally) invertible.
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Let us be more 
lever and 
ompute the trun
ated SVD solution for

k = 18:k = 18; % the (numeri
al) rank of Ad = diag(S); % the singular valuesidk = [1./d(1:k); zeros((N-1)-k,1)℄; % invert only 18iBk = V*diag(idk)*U'; % the 
orresponding 'inverse'fk = iBk*w; % the 'solution'plot(x, f, 'k','LineWidth', 2); hold onplot(x, fk, 'LineWidth', 2); hold offWe have, a
tually, 
ommitted a severe inverse 
rime: If an inverseproblem is solved using the same dis
retization with whi
h the data wasgenerated, the results are typi
ally overly optimisti
. This problem 
ouldbe 
ir
umvented, e.g., by interpolating onto a sparser grid before theinversion. The 'inverse 
rime e�e
t' 
an also be redu
ed by the additionof arti�
ial noise. 50
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In pra
ti
e, the measurement is always ina

urate. Let us thus add just atiny bit of noise in the measurement � so tiny that one 
ould barelyre
ognize it with naked eye. (In fa
t, this noise level 
orrespondsapproximately to the dis
repan
y between data sets simulated with theabove introdu
ed di�eren
e s
heme and with an alternative methodbased on FFT and the SVD of the original solution operator ET .)wn = w + 0.001*randn(N-1,1); % noisy datafkn_stupid = iBk*wn;plot(x, fkn_stupid, 'LineWidth', 2);As demonstrated on the next slide, this approa
h does not workanymore. The reason is the following: The inverse of the 18th singularvalue is approximately 3.15 · 1012, whi
h means that the (ever so tiny)
omponent of the noise ve
tor in the dire
tion v18 is heavily magni�ed.
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By trial and error, we de
ide to take the largest k = 8 singular valuesinto a

ount when 
omputing the trun
ated SVD solution:k = 8;idk = [1./d(1:k); zeros((N-1)-k,1)℄;iBk = V*diag(idk)*U';fkn = iBk*wn;plot(x, f, 'k','LineWidth', 2);hold onplot(x, fkn, 'LineWidth', 2);hold offThis is pretty mu
h the best one 
an do without additional informationabout the shape of the initial heat distribution. (For example, if we knewbeforehand that f is pie
ewise linear, su
h information 
ould bein
orporated in the inversion algorithm, whi
h would surely result inbetter re
onstru
tions.) 54
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Summary of the previous le
tureThe trun
ated SVD solution: For N ∋ k ≤ rank(A), there existunique xk ∈ H1 su
h that
Axk = Pky and xk ⊥ Ker(A).where Pk : H2 → span{u1, . . . , uk} is an orthogonal proje
tion. Thissolution 
an be given as

xk =
k∑

n=1

1

λn
〈y, un〉vn.
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SVD notations for matri
es : For a matrix A ∈ R
m×n, the SVD isusually written as

A = UΛV T,where Λ ∈ R
m×n has the (non-negative!) singular values on itsdiagonal, and the 
olumns of V ∈ R

n×n and U ∈ R
m×m are 
omposedof the (extended!) orthonormal basis {vj}nj=1 and {uj}mj=1, respe
tively.The trun
ated SVD solution for 1 ≤ k ≤ p := rank(A) is given by

xk = V Λ†
kU

Tywhere Λ ∈ R
n×m has the elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on itsdiagonal. The matrix A† = V Λ†

pU
T is 
alled the Moore�Penrosepseudoinverse of A.
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Morozov dis
repan
y prin
iple(Let us return to the 
ase where H1 and H2 are general separable realHilbert spa
es, and A : H1 → H2 is a 
ompa
t linear operator.)To make the trun
ated SVD a more useful tool, one should 
ome upwith some rule for 
hoosing the spe
tral 
ut-o� index k ≥ 1 appearing inthe trun
ated SVD problem
Ax = Pky and x ⊥ Ker(A).Unfortunately, it is di�
ult (if not impossible) to invent a reliablegeneral s
heme of doing this.However, there exists a widely used rule of thumb 
alled the Morozovdis
repan
y prin
iple.
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Assume that the measurement y ∈ H2 is a noisy version of someunderlying `exa
t' data ve
tor y0 ∈ H2. Furthermore, suppose that wehave some estimate on the dis
repan
y between y and y0, i.e.,

‖y − y0‖ ≈ ǫ > 0.For example, it may be known that
y = y0 + n,where the ve
tor n ∈ H2 is a realization of some random variable withknown probability distribution. Knowledge about the statisti
s of n
ould be due to, e.g., 
alibrations of the measurement devi
e.
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The idea of the Morozov dis
repan
y prin
iple is to 
hoose the smallest

k ≥ 1 su
h that the residual satis�es

‖y −Axk‖ ≤ ǫ.Intuitively this means that we 
annot expe
t the approximate solution toyield a smaller residual than the measurement error � otherwise wewould be �tting the solution to noise.Does su
h k exist?Yes, it does if ǫ > ‖Py − y‖, as explained below.
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If rank(A) =∞, it follows from Ran(A) = Ran(P ) ⊥ Ran(I − P ) that

‖Axk − y‖2 = ‖(Axk − Py) + (Py − y)‖2

= ‖Axk − Py‖2 + ‖(P − I)y‖2

=

∞∑

n=k+1

|〈y, un〉|2 + ‖(P − I)y‖2

→ ‖Py − y‖2 as k →∞,whi
h is the best one 
an do sin
e infz∈Ran(A) ‖z − y‖ = ‖Py − y‖ byvirtue of the proje
tion theorem. (However, there is no guarantee that

‖xk‖ would not explode as k →∞.)On the other hand, if p = rank(A) <∞,
‖Axp − y‖ = ‖Ppy − y‖ = ‖Py − y‖.(Usually, one should not 
hoose this large spe
tral 
ut-o� in pra
ti
e.)62



2.3 Tikhonov regularization

63



Motivation of Tikhonov regularizationAs pointed out on the previous slide, the norm of the residual

‖Ax− y‖is minimized by the sequen
e of trun
ated SVD solutions {xk} as ktends to rank(A). Unfortunately, when inverse/ill-posed problems are
onsidered, we typi
ally also have
‖xk‖ → ∞ as k → rank(A).(If rank(A) =∞, this 
an be understood literally; if rank(A) = p <∞,this should be understood in the sense that the xp is usually rubbish �espe
ially, if the measurement y is noisy.)As a 
onsequen
e, it seems well-motivated to try minimizing the residualand the norm of the solution simultaneously.64



Tikhonov regularized solutionA Tikhonov regularized solution xδ ∈ H1 is a minimizer of the Tikhonovfun
tional
Fδ(x) := ‖Ax− y‖2 + δ‖x‖2,where δ > 0 is 
alled the regularization parameter.Theorem. A Tikhonov regularized solution exists, is unique, and is givenby

xδ = (A∗A+ δI)−1A∗y =

p
∑

n=1

λn

λ2
n + δ

〈y, un〉vn,where p = rank(A) ≤ ∞.
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Proof: Let us prove this 
laim only in the 
ase that H1 = R
n and

H2 = R
m; the general result follows from the same ideas, but requiressome more sophisti
ated fun
tional analysis.To begin with, note that

xT(ATA+ δI)x = ‖Ax‖2 + δ‖x‖2 ≥ δ‖x‖2 > 0if x 6= 0. In parti
ular, ATA+ δI ∈ R
n×n is inje
tive, whi
h means thatit is invertible due to the fundamental theorem of linear algebra.Hen
e,

xδ := (ATA+ δI)−1ATy ∈ H1is well-de�ned.
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Let {λj}pj=1 be the positive singular values of A, and {vj}pj=1 and

{uj}pj=1 the 
orresponding sets of singular ve
tors that span Ker(A)⊥and Ran(A), respe
tively.We expand xδ =
∑

(vT
j xδ)vj + Qxδ, where Q : R

n → Ker(A) is anorthogonal proje
tion. A

ording to the �rst exer
ise of the �rst exer
isesession,

(ATA+ δI)xδ =

p
∑

j=1

(λ2
j + δ)(vT

j xδ)vj + δ Qxδ .

Similarly,

ATy =

p
∑

j=1

λj(u
T
j y)vj .
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Equating these two expressions results in

(vT
j xδ) =

λj

λ2
j + δ

(uT
j y), 1 ≤ j ≤ p,and Qxδ = 0, whi
h altogether means that

xδ =

p
∑

n=1

λn

λ2
n + δ

(uT
j y)vn =

p
∑

n=1

λn

λ2
n + δ

〈y, un〉vn.
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Finally, 
onsider x = xδ + z, where z ∈ R
n is arbitrary. We have

Fδ(x) = ‖(Axδ − y) +Az‖2 + δ‖xδ + z‖2

= ‖Axδ − y‖2 + 2 (Az)T(Axδ − y) + ‖Az‖2

+ δ
(
‖xδ‖2 + 2zTxδ + ‖z‖2

)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2

+2zT
(
(ATA+ δI

)
xδ −ATy)

= Fδ(xδ) + ‖Az‖2 + δ‖z‖2 ≥ Fδ(xδ),where the equality holds if and only if z = 0. This shows that

xδ = (ATA+ δI)−1ATy is the unique minimizer of the Tikhonovfun
tional. �
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Summary of the previous le
tureMorozov dis
repan
y prin
iple: A

ording to the Morozov dis
repan
yprin
iple, for the trun
ated SVD solution xk ∈ H1 one should 
hoose thesmallest spe
tral 
ut-o� index N ∋ k ≤ rank(A) su
h that

‖Axk − y‖ ≤ ǫ,where ǫ > 0 
orresponds to the anti
ipated ina

ura
y in the data ve
tor

y ∈ H2. How to estimate su
h ǫ is not trivial � one 
an even argue thatit is not unambiguous. Be that as it may, k is uniquely determined bythe Morozov dis
repan
y prin
iple if
‖y − Py‖ < ǫ.
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Tikhonov regularization: The Tikhonov regularized solution xδ ∈ H1 isthe unique minimizer of the Tikhonov fun
tional

Fδ(x) := ‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expli
itly by the formula
xδ = (A∗A+ δI)−1A∗y =

∑

n

λn

λ2
n + δ

〈y, un〉vnNote that the family of Tikhonov regularized solutions {xδ}δ∈R+

isparameterized by the positive real parameter δ > 0. (In the 
ase oftrun
ated SVD, the regularized solutions are parameterized dis
retely as

{xk}pk=1, where p = rank(A).)
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Properties of the Tikhonov regularized solutionThe Tikhonov regularized solution has the following intuitive properties.The proof of this theorem is omitted.Theorem. Let P : H2 → Ran(A) be an orthogonal proje
tion. Theresidual ‖Axδ − y‖ is stri
tly in
reasing as a fun
tion of δ and it satis�es

lim
δ→0
‖Axδ − y‖ = ‖Py − y‖ and lim

δ→∞
‖Axδ − y‖ = ‖y‖.Moreover, if Py ∈ Ran(A), then xδ 
onverges to the solution of theproblem

Ax = Py and x ⊥ Ker(A)as δ → 0. On the other hand, if Py /∈ Ran(A), then the norm ‖xδ‖tends to in�nity as δ goes to zero.
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The Morozov prin
iple for Tikhonov regularizationAssume on
e again that the measurement y ∈ H2 is a noisy version ofsome underlying `exa
t' data ve
tor y0 ∈ H2, and that

‖y − y0‖ ≈ ǫ > 0.In the framework of the Tikhonov regularization, the Morozovdis
repan
y prin
iple advises to 
hoose the regularization parameter

δ > 0 so that the residual satis�es
‖y −Axδ‖ = ǫ.Su
h a regularization parameter exists if

‖y − Py‖ < ǫ < ‖y‖.This follows from the above theorem be
ause the residual ‖y −Axδ‖ is
ontinuous with respe
t to δ. 74



Tikhonov regularized solution for matri
esAssume on
e again that H1 = R
n and H2 = R

m. In this 
ase, theTikhonov fun
tional 
an be given as

Fδ(x) =

∥
∥
∥
∥
∥
∥




A
√
δI



x−




y

0





∥
∥
∥
∥
∥
∥

2

, I ∈ R
n×n, 0 ∈ R

n. (5)

It is interesting to noti
e that the normal equation 
orresponding to thisleast squares problem is (see 3. exer
ise of 1. exer
ise session)




A
√
δI





T 


A
√
δI



x =




A
√
δI





T 


y

0



 ,

or equivalently

(ATA+ δI)x = ATy.75



Bear in mind that one does not, a
tually, need to form this normalequation in Matlab when using Tikhonov regularization: After de�ning

K =




A
√
δI



 ∈ R
(n+m)×n and z =




y

0



 ∈ R
n+m,

the 
ommandxdelta = K\z
omputes the Tikhonov regularized solution.Explanation: For non-square matri
es the mldivide 
ommand ofMatlab tries to solve the 
orresponding least squares problem. As uniqueminimizer is known to exist, this 
orresponds to multiplying z from theleft by the Moore�Penrose pseudoinverse of K (see 3. exer
ise of 1.session). As all n singular values of K are larger than √δ (see 1.exer
ise of 2. session) this pseudoinverse is well-behaved.76



An example: Heat distribution in a rod (revisited)Re
all the dis
retized inverse heat 
ondu
tion problem that wasdis
ussed during the se
ond and third le
tures. Let w be the simulatedheat distribution at T=0.1 with the `wedge fun
tion' as the initial data,and A the 
orresponding propagation matrix A=expm(TB). We add thesame small amount of noise as previously and 
ompute the Tikhonovregularized solution:wn = w + 0.001*randn(N-1,1);zn = [wn; zeros(N-1,1)℄; % augmented data ve
torK = [A; sqrt(delta)*eye(N-1)℄; % augmented system matrixfdelta = K\zn; % Tikhonov regularized solution
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We do this for three di�erent values of the regularization parameter

δ = 1 (too large), δ = 10−8 (too small), and δ = 5.95 · 10−5, whi
h
orresponds to the Morozov dis
repan
y prin
iple: We assume here thatthe dis
repan
y between the measured data and the underlying `exa
t'data equals the square root of the expe
tation value of the squared normof the noise ve
tor, i.e.,
ǫ =

√
99 · 0.0012 ≈ 9.95 · 10−3.Note that the value of δ given by the dis
repan
y prin
iple depends onthe parti
ular realization of the noise ve
tor even though ǫ does not.The expe
tation value of the norm of the noise ve
tor would be as � ifnot more � logi
al 
hoi
e for ǫ, but it is more di�
ult to write downexpli
itly. (Lu
kily, these two 
hoi
es do not di�er that mu
h in the
onsidered 
ase: numeri
al tests suggest that the latter gives

ǫ ≈ 9.92 · 10−3.) 78



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

79



0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

80



0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

81



Generalizations of Tikhonov regularization

82



Tikhonov regularization for nonlinear problemsLet us brie�y 
onsider the nonlinear 
ase, where A : H1 → H2 is anonlinear operator and the examined equation is of the form

A(x) = y.A standard way of solving su
h a problem is via sequential linearizations,whi
h leads to solving a set of linear problems involving the derivativeoperator of A.As an example, in Newton's method one would �rst pi
k an initial guess

x0 ∈ H1 and then try to produ
e the (j + 1)th iterate by solving thelinearized problem

A(xj) +A′(xj)(xj+1 − xj) = y, j = 0, 1, . . . ,re
ursively for xj+1. (In the general setting A′ is the Fré
het derivativeof A, but for �nite-dimensional operators it is just the Ja
obian matrix.)83



Unfortunately, if large alterations of x produ
e only small 
hanges in

A(x), i.e., if the original equation is ill-posed, there is no guarantee thatthe 
orresponding linearized problems 
an be solved as su
h � not evenin the least squares sense. Hen
e, regularization is needed.Unlike the trun
ated SVD method, Tikhonov regularization generalizeseasily to this nonlinear framework. Now, it amounts to sear
hing for

xδ ∈ H1 that minimizes the fun
tional
Fδ(x) = ‖A(x)− y‖2 + δ‖x‖2, δ > 0.Sin
e Fδ is no longer quadrati
 in x, it is not 
lear that a uniqueminimizer exists. Furthermore, even if a Tikhonov regularized solutionexists, it 
annot usually be given by an expli
it formula.
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Be that as it may, one 
an try to minimize Fδ(x) by using somenonlinear optimization te
hnique. One � but probably not the best �way of doing this, is to pi
k an initial guess xδ,0 ∈ H1 and thenre
ursively de�ne the (j + 1)th iterate xδ,j+1 ∈ H1 to be the uniqueminimizer of the xδ,j-dependent Tikhonov fun
tional

F̃δ,j(x) = ‖A(xδ,j) + A′(xδ,j)(x− xδ,j)− y‖2 + δ‖x‖2

= ‖A′(xδ,j)x− [y −A(xδ,j) +A′(xδ,j)xδ,j ]‖2 + δ‖x‖2,where the dependen
e of A on x has been linearized with xδ,j as thebase point. Sin
e this Tikhonov fun
tional is of the `standard form',

xδ,j+1 
an be given expli
itly with the help of A′(xδ,j), A(xδ,j), xδ,j , yand δ. (In pra
ti
e, evaluating A′(xδ,j) is often the most di�
ult part.)Combining this with some reasonable stopping 
riterion does indeed givereasonable solutions for many nonlinear inverse problems.85



More general penalty termsA more general way of de�ning the Tikhonov fun
tional is

Fδ(x) = ‖Ax− y‖2 + δG(x),where the penalty fun
tion G : H1 → R takes non-negative values. Theexisten
e of a unique minimizer for this kind of fun
tional depends on theproperties of G, as does the workload needed for �nding the minimizer.One typi
al way of de�ning G is
G(x) = ‖L(x− x0)‖2, (6)where x0 ∈ H1 is a given referen
e ve
tor and L is some linear operator.The 
hoi
e of x0 and L re�e
ts our prior knowledge about the `feasible'solutions: Lx is some property that is known to be relatively 
lose to thereferen
e value Lx0 for all reasonable solutions. (In standard 
ase x0 = 0and L = I, the solutions are `known' to lie relatively 
lose to the origin.)86



The numeri
al implementation of Tikhonov regularization with G of (6)is approximately as easy as for the standard penalty term:In the 
ase that H1 = R
n and H2 = R

m, the operator L is just somematrix in R
l×n and the Tikhonov fun
tional 
an be given as

Fδ(x) = ‖Kx− z‖2 (7)where

K =




A
√
δL



 and z =




y

√
δLx0



 .

Assuming that the matrix L is 
hosen so 
leverly that all n singularvalues of K are (well) larger than zero, the Tikhonov regularized solution
an be 
omputed in Matlab by applying the pseudoinverse of K on z bythe 
ommandxdelta = K\z 87



Explanation: As shown in 3. exer
ise of 1. session, all minimizers of (7)satisfy the normal equation
KTKx = KTz.On the other hand, it was proved in 1. exer
ise of 1. session that thesymmetri
 matrix KTK ∈ R
n×n has n positive eigenvalues that are thesquares of the singular values of K. In parti
ular, this means that KTKis invertible, and thus there is exa
tly one minimizer for (7). This isgiven by K†z due to 3. exer
ise of 1. session.(The fa
t that a symmetri
 matrix with nonzero eigenvalues is invertiblefollows, e.g., from the eigenvalue de
omposition.)
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2.4 Regularization by trun
ated iterativemethods
90



For simpli
ity, in the rest of Chapter 2 we will only 
onsider the 
asewhen
Ax = yis a system of linear equations, i.e., A ∈ R

m×n, x ∈ R
n and y ∈ R

m.In the literature there are lots of iterative methods for solving this kindof matrix equations. By �iterative� we mean a method that attempts tosolve the problem by �nding su

essive approximations for the solution,starting from some initial guess. Typi
ally, 
omputation of su
hiterations involves multipli
ations by A and its adjoint, but not expli
it
omputation of inverse operators. (The Gaussian elimination is anexample of the opposite: it is a dire
t, i.e., non-iterative, method thattries to 
ome up with a solution in a �nite number of steps.)
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Iterative methods are sometimes the only feasible 
hoi
e if the probleminvolves a large number of variables (sometimes of the order of millions),making dire
t methods prohibitively expensive. Iterations are espe
iallypra
ti
al if multipli
ations by A are 
heap. This is the 
ase, e.g., when Ais a multi-diagonal matrix originating from a di�eren
e or elementapproximation for some boundary value problem for an ellipti
 partialdi�erential operator. (There exist lots of other examples, as well.)Although iterative solvers have not usually been designed for ill-posedequations, they often posses regularizing properties: If the iterations areterminated before �the solution starts to �t to noise�, one often obtainsreasonable solutions for inverse problems.
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2.4.1 Landweber�Fridman iteration
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Bana
h �xed point iterationLet T : R
n → R

n be a ve
tor-valued fun
tion. We say that S ⊂ R
n isan invariant set for T if

T (S) ⊂ S, i.e., T (x) ∈ S for all x ∈ S.Moreover, T is a 
ontra
tion on an invariant set S if there exists

0 ≤ κ < 1 su
h that
‖T (x)− T (y)‖ < κ‖x− y‖ for all x, y ∈ S.Finally, a ve
tor x ∈ R

n is 
alled a �xed point of T if
T (x) = x..
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Theorem. Let T : R
n → R

n be a 
ontra
tion on the 
losed invariantset S. Then there exists a unique �xed point x ∈ S of T . Furthermore,this �xed point 
an be found by the following �xed point iteration:

x = lim
k→∞

xk, where xk+1 = T (xk),for any x0 ∈ S.Proof. The proof � although not very 
ompli
ated � is omitted.
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A simple example: Consider the fun
tion T : x 7→ x2 from R to itself.(i) Let S = [0, 1/3]. Clearly, T (S) = [0, 1/9] ⊂ S and

|T (x)− T (y)| = |x2 − y2| = |x+ y||x− y| ≤ 2/3|x− y|.Hen
e, there is a unique �xed point, whi
h is given by limx2k

0 = 0for every x0 ∈ S.(ii) If S = (0, 1/3], the �xed point does not anymore lie in S.(iii) If S = [0, 1], T (S) = S, but T is no longer a 
ontra
tion:

|T (3/4)− T (1/2)| = 5/16 > 1/4 = |3/4− 1/2|.In this 
ase there are two �xed points: T (0) = 0 and T (1) = 1.(iv) If, e.g., S = [0, 5/6], there is a unique �xed point 0 ∈ S, but itsexisten
e is not predi
ted by the �xed point theorem sin
e T is not a
ontra
tion on S. 96



Landweber�Fridman s
hemeInstead of the original equation

Ax = y,we will 
onsider the normal equation
ATAx = ATy.A

ording to 3. exer
ise of 1. session, x ∈ R

n satis�es the normalequation of and only if it minimizes the residual
‖Ax− y‖.Moreover, there exist a unique element of R

n, given by x† := A†y ∈ R
n,that solves the normal equation and is orthogonal to Ker(A).(Bear in mind, however, that the use of the pseudoinverse A† is suspe
tif the matrix is ill-
onditioned, i.e., if λ1/λp ≫ 1, where p = rank(A).)97



We de�ne an a�ne mapping T : R
n → R

n by

T (x) = x+ β(ATy − ATAx), β ∈ R.Noti
e that any solution of the normal equation is a �xed point of T .We will show that if β is small enough there is only one �xed point of Tin Ker(A)⊥, namely x†, and it 
an be rea
hed by the �xed pointiteration if x0 = 0.Theorem. Let 0 < β < 2/λ2
1 be �xed. Then, the �xed point iteration

xk+1 = T (xk), x0 = 0,
onverges towards x† as k →∞.
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Proof. Set S = Ker(A)⊥ = Ran(AT). Clearly, T (S) ⊂ S sin
e

T (x) = x+ AT (βy − βAx) ∈ Ran(AT)for all x ∈ Ran(AT). Thus, S is invariant under T .Re
all that A and its transpose 
an be represented with the help of A'ssingular system as
Ax =

p
∑

j=1

λj(v
T
j x)uj and ATy =

p
∑

j=1

λj(u
T
j y)vj ,where p = rank(A) and λj are the positive singular values of A. Theorthonormal sets of ve
tors {vj}pj=1 and {uj}pj=1 span S = Ker(A)⊥and Ran(A), respe
tively. In parti
ular,

x =

p
∑

j=1

(vT
j x)vj for all x ∈ S.
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Let x, z ∈ S and note that also x− z ∈ S. We have

T (x)− T (z) = (x− z)− βATA(x− z)

=

p
∑

j=1

(vT
j (x− z))vj − β

p
∑

j=1

λ2
j(v

T
j (x− z))vj

=

p
∑

j=1

(1− βλ2
j )(v

T
j (x− z))vj .

As λ1 is the largest of the singular values, it holds by assumption that

−1 < βλ2
j − 1 ≤ βλ2

1 − 1 < 2− 1 = 1, for all j = 1, . . . , p.Hen
e, we see that

κ := max
j=1,...,p

|βλ2
j − 1| < 1.
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In 
onsequen
e,
‖T (x)− T (z)‖2 ≤

p
∑

j=1

(1− βλ2
j )

2(vT
j (x− z))2

≤ κ2

p
∑

j=1

(vT
j (x− z))2 = κ2‖x− z‖2,

whi
h shows that T is a 
ontra
tion on S. As S is also a 
losed invariantset for T , we know that there exists a unique �xed point of T in S.To 
omplete the proof, we re
all that x† = A†y belongs to

S = Ker(A)⊥ and satis�es the normal equation (see exer
ise 3. ofsession 1.). Furthermore, sin
e x0 = 0 is in S � it is orthogonal to allve
tors �, the �xed point iteration starting from x0 
onverges to x†. �
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Regularization properties of Landweber�FridmanFrom now on we will assume that 0 < β < 2/λ2
1.In the third exer
ise session, it will be shown that the kth iterate of theLandweber�Fridman iteration 
an be written expli
itly:

xk =

p
∑

j=1

1

λj

(
1− (1− βλ2

j )
k
)
(uT

j y)vj , k = 0, 1, . . . . (8)

Sin
e |1− βλ2
j | < 1 by assumption,

(1− βλ2
j )

k → 0 as k →∞,whi
h is what one would expe
t sin
e
x† =

p
∑

j=1

1

λj
(uT

j y)vj .
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However, while k ∈ N is �nite, the 
oe�
ients of the terms (uT
j y)vjappearing in the series representation (8) satisfy

1

λj

(
1− (1− βλ2

j )
k
)

=
1

λj

(

1−
k∑

l=0

(
k
l

)

(−1)lβlλ2l
j

)

=
1

λj

k∑

l=1

(
k
l

)

(−1)l+1βlλ2l
j

=
k∑

l=1

(
k
l

)

(−1)l+1βlλ2l−1
j ,whi
h 
onverges to zero as λj → 0 (for a �xed k).As a 
onsequen
e, while k is `small enough', no 
oe�
ient of (uT

j y)vj in(8) is so large that the 
omponent of the measurement noise in thedire
tion uj is ampli�ed in an un
ontrolled manner. (Re
all that the
orresponding 
oe�
ients for Tikhonov regularization are λj/(λ
2
j + δ).)103



Dis
repan
y prin
iple for Landweber�FridmanLet the measurement y ∈ R
m be a noisy version of some underlying`exa
t' data ve
tor y0 ∈ R

m, and assume that

‖y − y0‖ ≈ ǫ > 0.The Morozov dis
repan
y prin
iple works for the Landweber�Fridmaniteration in approximately the same way as for the trun
ated SVD andthe Tikhonov regularization: Choose the smallest k ≥ 0 su
h that theresidual satis�es

‖y −Axk‖ ≤ ǫ.
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Su
h a stopping rule exists if

ǫ > ‖y − Py‖ = ‖y −A(A†y)‖,where P = AA† (see 1. ses., 2. ex.) is the orthogonal proje
tion ontothe range of A. Indeed, sin
e the sequen
e {xk}∞k=0 
onverges to

x† = A†y, for any ǫ > ‖y −Ax†‖ there exists k = kǫ ∈ N su
h that

‖xk − x†‖ ≤
1

‖A‖ (ǫ− ‖y −Ax
†‖),and thus by the reverse triangle inequality,

‖y −Axk‖ − ‖y −Ax†‖ ≤ ‖(y −Axk)− (y −Ax†)‖
≤ ‖A‖‖xk − x†‖
≤ ǫ− ‖y − Ax†‖,whi
h just means that ‖y − Axk‖ ≤ ǫ.105



An example: Heat distribution in a rod (revisited)Re
all again the dis
retized inverse heat 
ondu
tion problem that wasdis
ussed during the se
ond and third le
tures. Let w be the simulatedheat distribution at T=0.1 with the `wedge fun
tion' as the initial data,and A the 
orresponding propagation matrix A=expm(TB). We add againthe same small amount of noise to the measurement:wn = w + 0.001*randn(N-1,1);and use the Morozov dis
repan
y prin
iple with
ǫ =

√
99 · 0.0012 ≈ 9.95 · 10−3.Be
ause the largest singular value of the solution operator

ET : L2(0, π)→ L2(0, π) in the 
orresponding in�nite-dimensional 
aseis 1, it is reasonable to anti
ipate that the same is also approximatelytrue for A. Thus, we 
hoose β = 1 < 2/1 ≈ 2/λ2
1.106



The implementation of the Landweber�Fridman iteration with theMorozov dis
repan
y prin
iple in Matlab is straightforward. Bear inmind, however, that matrix-matrix produ
ts are far more expensive to
ompute than matrix-ve
tor produ
ts. Hen
e, you should either 
omputeand store the produ
t ATA before you start iterating or use parenthesesto avoid 
omputing this produ
t during the iteration:flw = flw + beta*(A'*wn - A'*(A*flw));With the parti
ular realization of the measurement noise, the Morozovdis
repan
y prin
iple was satis�ed by the iterate 
orresponding to

k = 5712. In the following, we visualize the evolution of theLandweber�Fridman iteration for k = 1, 2, 7, 20, 54, 148, 403, 1096, 2980,show the residual as a fun
tion of k, and plot the solution 
orrespondingto the dis
repan
y prin
iple.
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Computational methods in inverse problemsNuutti Hyvönen, Matti Leinonen and Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiSixth le
ture, February 4, 2011.
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2.4.1 Ka
zmarz iteration and ART

112



Partition of the original problemLet us 
ontinue to 
onsider the matrix equation

Ax = y,where A ∈ R
m×n, x ∈ R

n and y ∈ R
m.Suppose that we 
an write the system matrix A in the form

A =








A1...
Al







, Aj ∈ R

kj×n, j = 1, . . . l,

where k1 + · · ·+ kl = m and ea
h submatri
e Aj is assumed to have kjlinearly independent row ve
tors, i.e., rank(Aj) = kj ≤ n. In parti
ular,

Aj de�nes a surje
tive mapping from R
n to R

kj . (Re
all that the rankof a matrix equals the number of linearly independent 
olumns/rows.)113



Similarly, we de
ompose y ∈ R
m into l subve
tors:

y =








y1...
yl







, yj ∈ R

kj , j = 1, . . . , l.

Now, the original equation 
an be given as the system

Ajx = yj , j = 1, . . . , l.The jth of these matrix problems is 
omposed of kj ≤ n linearlyindependent linear equations, and thus the 
orresponding 'solution spa
e'

Xj = {x ∈ R
n | Ajx = yj}is a n− kj dimensional hyperplane in R

n. (Noti
e that this hyperplaneis a subspa
e, i.e., it passes through the origin, if and only if yj = 0.)114



The Ka
zmarz sequen
eAlthough Xj is not in general a subspa
e, we 
an de�ne an orthogonalproje
tion Pj : R
n → Xj by requiring that

Pjz ∈ Xj and (I − Pj)z ⊥ (w1 − w2)for all z ∈ R
n and w1, w2 ∈ Xj . In other words, Pjz is the point 
losestto z in Xj . Furthermore, we de�ne the sequential `proje
tion'

P : R
n → R

n via
P = PlPl−1 . . .P2P1.The Ka
zmarz sequen
e {xk}∞k=0 ⊂ R

n is de�ned re
ursively as

xk+1 = Pxk, x0 = 0.
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Theorem. Assume that X =
⋂l

j=1Xj 6= ∅, i.e., the original equationhas at least one solution. Then the Ka
zmarz sequen
e {xk}∞k=0 ⊂ R
n
onverges to the minimum norm solution as k goes to in�nity. In otherwords,

lim
k→∞

xk = x†,where x† = A†y satis�es Ax† = y and x† ⊥ Ker(A).Proof. The text book presents the (relatively 
ompli
ated) proof in themore general 
ase where A operates between separable Hilbert spa
es.Here, we omit the proof.
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Algebrai
 re
onstru
tion te
hnique (ART)Let us 
onsider the spe
ial 
ase where the original problem Ax = y,

A ∈ R
m×n, is partitioned into m subproblems, i.e., linear equations:

Ajx = aT
j x = yj , j = 1, . . . ,m,where aT

j is the jth row of A � with aj ∈ R
n treated as a 
olumnve
tor � and yj ∈ R is just the jth 
omponent of the ve
tor y ∈ R

m.Noti
e that in this 
ase the 
ondition that Aj : R
n → R is a surje
tionfor every 1 ≤ j ≤ m is equivalent to requiring that A does not have anyempty rows.The Ka
zmarz iteration 
orresponding to this setting is 
alled thealgebrai
 re
onstru
tion te
hnique (ART) � at least, this is what we
all ART on this 
ourse. ART is used extensively in X-ray tomography.
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Examples of ART iterationsLet us �rst 
onsider the 
ase where

A =




1 1

−1 3



 and y =




1

2



 .

In parti
ular, A is invertible and the 
orresponding hyperplanes, i.e., linesin R
2, are given by

X1 = {x = (x1, x2)
T ∈ R

2 | x1 + x2 = 1},
X2 = {x = (x1, x2)

T ∈ R
2 | − x1 + 3x2 = 2}.In this 
ase, the ART algorithm should 
onverge towards the uniquesolution x = (1/4, 3/4)T. In the following, we visualize ea
h proje
tionby Pj , j = 1, 2, not just the sequential proje
tions by P = P2P1.
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Let us then add one row to A and one 
omponent to y:

A =







1 1

−1 3

1 0







and y =







1

2

1






,

whi
h adds the third hyperplane
X3 = {x = (x1, x2)

T ∈ R
2 | x1 = 1}.into play.In this 
ase, the equation Ax = y does not have a solution. The ARTiteration seems to 
onverge to a point on X3 depi
ted by an asterisk inthe following �gure � note that this does not mean that nothinghappens within ea
h iteration step. For 
omparison, the 'ring' marks theleast squares solution x† = A†y. 120
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Finally, we return to the 
ase of square matri
es, but 
hoose A so thatits rows are somewhat `
loser' to being linearly dependent:

A =




0 1

−1 3



 and y =




1

2



 .

On
e again, A is invertible and the 
orresponding 'solution hyperplanes'are given by

X1 = {x = (x1, x2)
T ∈ R

2 | x2 = 1},
X2 = {x = (x1, x2)

T ∈ R
2 | − x1 + 3x2 = 2}.The ART algorithm 
onverges towards the unique solution x = (1, 1)T,but extremely slowly.
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Computation of the proje
tions PjConsider still the equation Ax = y, A ∈ R
n×m, and assume still thatthere exists a partition

A =








A1...
Al







, Aj ∈ R

kj×n, y =








y1...

yl







, yj ∈ R

kj ,

su
h that ea
h Aj is surje
tive, i.e., rank(Aj) = kj ≤ n. As before, let

Xj denote the (non-empty) hyperplane 
omposed of the solutions to

Ajx = yj , and Pj : R
n → Xj the orthogonal proje
tion onto su
hhyperplane. Furthermore, we de�ne

Qj : R
n → Ker(Aj), j = 1, . . . , l,to be the orthogonal proje
tion onto the kernel of Aj .124



In the fourth exer
ise session, it will be shown that

Pjx = z +Qj(x− z)for all x ∈ R
n and any z ∈ Xj . In parti
ular, this formula is independentof the parti
ular 
hoi
e of z.Lemma. The proje
tion Pj 
an be written expli
itly as

Pjx = x+AT
j (AjA

T
j )−1(yj −Ajx)for all x ∈ R

n and j = 1, . . . , l.
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Proof. We start by proving that AjA
T
j ∈ R

kj×kj is invertible. Sin
e

Aj : R
n → R

kj is surje
tive, it follows that

Ker(AT
j )⊥ = Ran(Aj) = R

kj .Hen
e, Ker(AT
j ) = {0}, i.e., AT

j is inje
tive. This means, in fa
t, thatalso AjA
T
j is inje
tive:

AjA
T
j z = 0 ⇒ zTAjA

T
j z = 0 ⇒ ‖AT

j z‖2 = 0 ⇒ z = 0.Due to the fundamental theorem of linear algebra, the inje
tive squarematrix AjA
T
j is invertible.Fix an arbitrary x ∈ R

n and let us write
Pjx = z +Qj(x− z)with some z ∈ Xj , as suggested before the lemma.
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Sin
e Qj : R
n → Ker(Aj) is an orthogonal proje
tion, I −Qj maps R

nonto Ker(Aj)
⊥ (and is, in fa
t, also an orthogonal proje
tion). Hen
e,we have

x− Pjx = (I −Qj)(x− z) ∈ Ker(Aj)
⊥ = Ran(AT

j ).This means that there exist w ∈ R
kj su
h that

AT
j w = x− Pjx, (9)and, 
onsequently,

AjA
T
j w = Ajx−AjPjx = Ajx− yjbe
ause Pjx ∈ Xj . Solving this equation for w and substituting into (9)results in

AT
j (AjA

T
j )−1(Ajx− yj) = x− Pjx,whi
h 
ompletes the proof. �127



Algorithmi
 implementation of ARTIn the 
ase of ART, i.e., when the submatri
es Aj = aT
j , j = 1, . . . ,m,are the rows of the original system matrix A, and yj , j = 1, . . . ,m, arethe 
omponents of y, the inverse needed above

(AjA
T
j )−1 = (aT

j aj)
−1 = 1/‖aj‖2is just a real number. Thus, the ART algorithm reads asSet k = 0 and x0 = 0;Repeat until the 
hosen stopping rule is satisfied:

z0 = xk;for j = 1, . . . ,m

zj = zj−1 + (1/‖aj‖2)(yj − aT
j zj−1)aj;end

xk+1 = zm; k ← k + 1;end 128



Dis
repan
y prin
iple for the Ka
zmarz iterationAs you probably guess, we let the measurement y ∈ R
m be a noisyversion of some underlying `exa
t' data ve
tor y0 ∈ R

m, and assume that

‖y − y0‖ ≈ ǫ > 0.The Morozov dis
repan
y prin
iple works for the Ka
zmarz iteration asfollows: Choose the smallest k ≥ 0 su
h that the residual satis�es

‖y −Axk‖ ≤ ǫ,if su
h k exists.
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Unlike for the trun
ated SVD and the Landweber�Fridman iteration, the
ondition
ǫ > ‖y − Py‖,where P is the proje
tion onto the range of A, is not su�
ient toguarantee the existen
e of su
h a stopping index k without furtherassumptions. As an example, in the se
ond example of this le
ture

‖y −Axk‖  0.98 as k →∞,while ‖y − Py‖ ≈ 0.59.However, one 
an always try to apply the Morozov dis
repan
y prin
ipleand hope for the best.
130



An example: Heat distribution in a rod (revisited)Let us on
e again 
onsider the dis
retized inverse heat 
ondu
tionproblem in an insulated rod. We simulate the data in the exa
tly sameway as above, add the same amount of noise and use the same value of

ǫ for the Morozov dis
repan
y prin
iple. The implementation of ARTwith the dis
repan
y prin
iple in Matlab is straightforward.With the parti
ular realization of the measurement noise, the Morozovdis
repan
y prin
iple was satis�ed by the iterate 
orresponding to

k = 493. In the following, we visualize the evolution of the ARTiteration for k = 1, 2, 7, 20, 54, 148, 403, show the residual as a fun
tionof k, and plot the solution 
orresponding to the dis
repan
y prin
iple.
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2.4.3 Krylov subspa
e methods

136



Krylov subspa
e methodsThe Krylov subspa
e methods are iterative solvers for (large) matrixequations of the form Ax = y, A ∈ R
n×n. Loosely speaking, su
hmethods try to approximate the solution ve
tor x ∈ R

n as a linear
ombination of ve
tors of the type u, Au, A2u et
., with some given

u ∈ R
n. If multipli
ation by A is 
heap � e.g., if A is sparse �, theKrylov subspa
e methods are espe
ially e�
ient.On this 
ourse, we only 
onsider the most well-known Krylov subspa
emethod, the 
onjugate gradient method. Other methods of this 
lassin
lude, e.g., the generalized minimal residual method (GMRES), andthe bi
onjugate gradient method (BiCG).
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The regularizing properties of the 
onjugate gradient method 
an beanalyzed expli
itly; see, e.g., the monographM. Hanke, Conjugate gradient type methods for ill-posed problems,Pitman Resear
h Notes in Mathemati
s Series, 327.However, here we 
ontent ourselves with introdu
ing the basi
 ideasbehind the 
onjugate gradient s
heme and demonstrating numeri
allyhow appli
ation of an `early stopping rule' provides reasonable solutionsfor inverse problems.
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Assumptions on A and a related inner produ
tWe assume that the system matrix A ∈ R
n×n is symmetri
 and positivede�nite, i.e.,

AT = A and uTAu > 0 for u 6= 0.In parti
ular, this means that the square matrix A is inje
tive, and
onsequently invertible due to the fundamental theorem of linearalgebra. It is easy to see that the inverse A−1 ∈ R
n×n is also symmetri
and positive de�nite.We de�ne an A-dependent inner produ
t and the 
orresponding norm via

〈u, v〉A = uTAv and ‖u‖A = 〈u, u〉1/2
A .It follows from the assumptions on A that 〈·, ·〉A : R

n × R
n → R reallyis an inner produ
t on R

n, and 
onsequently ‖ · ‖A : R
n → R is a norm.139



The error, the residual and a minimization problemLet x∗ = A−1y ∈ R
n be the unique solution of the equation

Ax = yfor a given y ∈ R
n. We de�ne the error and the residual 
orrespondingto some approximative solution x ∈ R

n by

e = x∗ − x and r = y −Ax = Ae.Let φ : R
n → R be the A-dependent quadrati
 fun
tional

φ(x) = ‖e‖2A = eTAe = rTA−1r = ‖r‖2A−1 .Sin
e ‖ · ‖A is a norm, φ(x) is non-negative and equals zero if and only if

e = 0 ⇐⇒ x = x∗.Hen
e, minimizing φ is equivalent to solving the original equation.140



Minimizing φ in a given dire
tionEvaluating φ would require the knowledge of x∗ or, equivalently, that of

A−1; sin
e our ultimate goal is to approximate the solution x∗iteratively, assuming it known is not a feasible option.Fortunately, if we have some initial guess x0 ∈ R
n and some sear
hdire
tion 0 6= s0 ∈ R

n, we 
an �nd the minimizer of φ over the line

S0 = {x ∈ R
n | x = x0 + αs0, α ∈ R}without knowing x∗.
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Lemma. The fun
tion
α 7→ φ(x0 + αs0), R→ R,attains its minimum at
α = α0 :=

sT0 r0
‖s0‖2A

=
sT0 r0
sT0As0

,where r0 is the residual 
orresponding to the initial guess:

r0 = y −Ax0.
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Proof. The residual 
orresponding to x = x0 + αs0 is

r = y − Ax = y −Ax0 − αAs0 = r0 − αAs0.In 
onsequen
e,
φ(x) = rTA−1r

= (r0 − αAs0)TA−1(r0 − αAs0)
= α2sT0As0 − 2αsT0 r0 + rT0 A

−1r0,whi
h, as a fun
tion of α, is a parabola that opens upwards, be
ause

sT0As0 > 0. Hen
e, its minimum is at the unique zero of the derivativewith respe
t to α, i.e., at α = α0. �
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About the 
hoi
e of the sear
h dire
tionsGiven a sequen
e of (non-zero) sear
h dire
tions {sk} ⊂ R
n, we 
anthus produ
e a sequen
e of approximate solutions by �rst 
hoosing x0and then �nding iteratively the minimizer of φ on the line passingthrough xk in the dire
tion sk as follows:

xk+1 = xk + αksk, with αk =
sTk rk
sTkAsk

, k = 0, 1, . . . ,where rk is the residual 
orresponding to the kth iterate, i.e.,

rk = y −Axk.Noti
e that {φ(xk)} is a de
reasing sequen
e of real numbers be
ause

φ(xk+1) is always smaller than � or as small as � φ(xk).However, an e�
ient 
hoi
e of the sear
h dire
tions {sk} is a subtleissue. 144



Probably, one of the �rst ideas that 
omes to mind is to 
hoose

sk = −∇φ(xk) = 2(y −Axk), k = 0, 1, . . . ,be
ause it gives the dire
tion of the steepest des
ent. However, this doesnot in general provide a sequen
e {xk} that 
onverges fast towards theglobal minimizer x∗ = A−1y, as demonstrated by the following example:Let

A =




1 0

0 5



 and y =




0

0



 ,whi
h means, in parti
ular, that
φ(x) = φ(x(1), x(2)) = (x(1))2 + 5(x(2))2.The following image shows level 
ontours of φ and the sequen
e

{xk}9k=0 starting from x0 = (1, 0.3)T. The a
tual solution x∗ = (0, 0)Tis marked with an asterisk. 145
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Minimizing φ over a hyperplaneLet {s0, . . . , sk} be a set of linearly independent sear
h dire
tion. Next,we 
onsider �nding the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},where x0 ∈ R
n is the initial guess and Sk = [s0, . . . , sk] ∈ R

n×(k+1).Lemma. The fun
tion
h 7→ φ(x0 + Skh), R

k+1 → R,attains its minimum at

h = h∗ = (ST
k ASk)−1ST

k r0,where r0 = y −Ax0 is the residual 
orresponding to the initial guess.
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Proof. Let us �rst prove that ST
k ASk ∈ R

(k+1)×(k+1) is invertible: Dueto the positive de�niteness of A, we have

ST
k ASkz = 0 =⇒ zTST

k ASkz = 0 =⇒ Skz = 0,whi
h means that z = 0 sin
e the 
olumns of Sk are linearlyindependent. Hen
e, Ker(ST
k ASk) = {0}, i.e., ST

k ASk is inje
tive, andthus (ST
k ASk)−1 exists by the fundamental theorem of linear algebra.The residual 
orresponding to x = x0 + Skh satis�es

r = y −A(x0 + Skh) = r0 −ASkh,and thus

φ(x0 + Skh) = (r0 −ASkh)
TA−1(r0 − ASkh)

= hTST
k ASkh− 2rT0 Skh+ rT0 A

−1r0.
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In parti
ular, the 
oe�
ient matrix ST
k ASk of the quadrati
 term of

φ(x0 + Skh) in h is positive de�nite:

uT(ST
k ASk)u = (Sku)

TA(Sku) ≥ 0, u ∈ R
k+1,where the equality holds if and only if Sku = 0, i.e., u = 0. Thus, thebasi
s of quadrati
 programming tell us that the unique zero of thegradient of φ(x0 + Skh) with respe
t to h, i.e.,

h∗ = (ST
k ASk)−1ST

k r0,is the unique minimizer of φ(x0 + Skh) over h ∈ R
k+1. �
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A-
onjugate sear
h dire
tionsSin
e �nding the minimizer of φ over the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}involves inverting a (k + 1)× (k + 1) matrix, su
h an approa
h is notne
essarily very attra
tive.On the other hand, as demonstrated by the numeri
al example above,minimizing φ sequentially in the dire
tions s0, . . . , sk does not, ingeneral, result in as good approximate solution as doing theminimization over the whole hyperplane Sk at on
e. (Clearly, the �rsttwo sear
h dire
tions of the numeri
al example were linearlyindependent, and thus minimization over the hyperplane S2, i.e., thewhole R
2, would have given the global minimizer x∗ = (0, 0)T.)However, the sequential minimization does produ
e the minimizer over

Sk if the sear
h dire
tions {s0, . . . , sk} are 
hosen in a 
lever way.150



We say that non-zero ve
tors {s0, . . . , sk} ⊂ R
n are A-
onjugate if

〈si, sj〉A = sTi Asj = 0for i 6= j. In other words, the ve
tors {s0, . . . , sk} are A-
onjugate ifthey are orthogonal with respe
t to the inner produ
t 〈·, ·〉A.The A-
onjuga
y 
ondition 
an be expressed neatly with the help of thematrix Sk = [s0, . . . , sk] ∈ R
n×(k+1):

ST
kASk =








sT0...

sTk








[As0, . . . , Ask] = diag(d0, d1 . . . , dk) ∈ R
(k+1)×(k+1),

where dj = sTj Asj > 0, j = 0, . . . , k, due to the positive de�niteness ofthe matrix A.
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The following theorem demonstrates that it is useful to 
hoose thesear
h dire
tions to be A-
onjugate.Theorem. Let x0 ∈ R
n be an initial guess and assume that the ve
tors

{s0, . . . , sk} ⊂ R
n are non-zero and A-
onjugate. Then, the sequentialminimizer of φ over these dire
tions, i.e., xk+1 ∈ R

n obtained by theiteration
xj+1 = xj + αjsj , with αj =

sTj rj

sTj Asj
, j = 0, . . . , k,is the minimizer of φ on the hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1}.To put it short,

xk+1 = x0 + Skh∗ = x0 + Sk(ST
k ASk)−1ST

k r0.
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Proof. Let aj = (α0, . . . , αj)
T ∈ R

j+1. With this notation we have

xj = x0 +

j−1
∑

i=0

αisi = x0 + Sj−1aj−1, j = 1, . . . , k + 1.

Moreover the residual 
orresponding to xj is

rj = y −Axj = (y −Ax0)−ASj−1aj−1 = r0 −ASj−1aj−1.In parti
ular,

sTj rj = sTj r0 − sTj ASj−1aj−1 = sTj r0 + sTj [As0, . . . , Asj−1]aj−1,where the last term vanishes sin
e sj is A-
onjugate to {s0, . . . , sj−1}.
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Hen
e,
αj =

sTj rj

sTj Asj
=

sTj r0

sTj Asj
, j = 0, . . . , k.On the other hand, sin
e {s0, . . . , sk} are A-
onjugate, we have

(ST
k ASk)−1 =

(
diag(sT0As0, . . . , s

T
kAsk)

)−1

= diag(1/(sT0As0), . . . , 1/(s
T
kAsk)),whi
h means that

h∗ = (ST
k ASk)−1ST

k r0 = (ST
k ASk)−1








sT0 r0...
sTk r0








=








α0...

αk







.

Consequently, ak = h∗ and

xk+1 = x0 + Skak = x0 + Skh∗. �154
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Summary of the previous le
tureA Minimization problem: Let A ∈ R
n×n be symmetri
 and positivede�nite. Instead of solving the original equation Ax = y dire
tly, we
onsider minimizing the fun
tional

φ(x) = (x∗−x)TA(x∗−x) = eTAe = (y−Ax)TA−1(y−Ax) = rTA−1r,where x∗ = A−1y is the a
tual solution, and e and r are 
alled the errorand the residual 
orresponding to the approximate solution x. Theunique minimizer of this fun
tional is the solution of the originalproblem, i.e., x∗.
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A sequen
e of minimizers: Given an initial guess x0 and a set ofnon-zero sear
h dire
tions {sj}kj=0 ⊂ R
n, we de�ne the approximatesolution xj+1, j = 1, . . . , k, re
ursively as the minimizer of thefun
tional φ on the line

Sj = {x ∈ R
n | x = xj + αsj , α ∈ R}.This 
an be done through the iteration

xj+1 = xj + αjsj , with αj =
sTj rj

sTj Asj
, j = 0, . . . , k,where rj = y −Axj is the residual 
orresponding to xj .
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A-
onjugate sear
h dire
tions: The non-zero ve
tors {sj}kj=0 are
alled A-
onjugate if
〈si, sj〉A = sTi Asj = 0 for i 6= j.If the sear
h dire
tions are 
hosen this 
leverly, the iterate xk+1 is theminimizer of φ over the whole hyperplane

Sk = {x ∈ R
n | x = x0 + Skh, h ∈ R

k+1},i.e., over all ve
tors of the form x = x0 +
∑k

j=0 hjsj , where h0, . . . , hkare real numbers. This minimizer 
an be given expli
itly as

xk+1 = x0 + Skh∗, h∗ = (ST
k ASk)−1ST

k r0,where Sk = [s0, . . . , sk] ∈ R
n×(k+1). In parti
ular, xn is the globalminimizer, i.e., xn = x∗.
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A useful 
orollary about the residualsIf the sear
h dire
tions are 
hosen to be A-
onjugate, we have also extrainformation about the residuals:Corollary. If the non-zero sear
h dire
tions {sj}kj=0 ⊂ R
n are

A-
onjugate, then the residual rk+1 = y −Axk+1 satis�es

rk+1 ⊥ span{s0, . . . , sk},where the orthogonality is in the sense of the standard inner produ
t.Proof. Sin
e xk+1 = x0 + Skh∗, it holds that
rk+1 = (y − Ax0)−ASkh∗ = r0 −ASkh∗.In 
onsequen
e,

[rTk+1s0, . . . , r
T
k+1sk] = rTk+1Sk = rT0 Sk − hT

∗ S
T
k ASk = 0be
ause hT

∗ = ((ST
k ASk)−1ST

k r0)
T = rT0 Sk(ST

k ASk)−1.160



How to 
onstru
t A-
onjugate sear
h dire
tions?There are many ways to 
onstru
t a set of A-
onjugate sear
hdire
tions. If one 
hooses to use Krylov subspa
es the result is the
onjugate gradient algorithm:De�nition: The kth Krylov subspa
e of A with the initial ve
tor

r0 = y −Ax0 is de�ned as
Kk = K(A, r0) = span{r0, Ar0, . . . , Ak−1r0}, k = 1, 2, . . . .Note, in parti
ular, that A(Kk) ⊂ Kk+1.Take also note that Kk−1 ⊂ Kk, where the dimension of the latter is atmost k, and it is at most one higher than that of the former. (Forexample, if r0 is an eigenve
tor of A, then the ve
tors spanning Kk ares
alar multiples of ea
h other, whi
h means that dim(Kk) = 1 for all

k ≥ 1. Fortunately, it turns out that this is not a hindran
e.)161



The logi
 of the 
onjugate gradient algorithmLet us 
onstru
t a sequen
e of A-
onjugate sear
h dire
tions indu
tively.The leading idea is that, given a set of A-
onjugate sear
h dire
tion, we
an either �nd a new A-
onjugate dire
tion or the previous iterate isalready the global minimizer x∗, i.e., the unique solution of Ax = y.1. Choose an initial guess x0 ∈ R
n.2. If r0 = y −Ax0 = 0, we have found the solution x∗ = x0. Otherwise,set s0 = r0 (, whi
h is, by the way, the steepest des
ent dire
tion).Note, in parti
ular, that the set of a single sear
h dire
tion {s0} istrivially A-
onjugate and

K1 = span{s0} = span{r0}.
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3. Suppose that we have non-zero and A-
onjugate sear
h dire
tions

{sj}k−1
j=0 , k ≥ 1, su
h that

Km = span{s0, . . . , sm−1} = span{r0, . . . , rm−1}, m = 1, . . . , k,(10)where rj = y −Axj , j = 0, . . . , k− 1, are the residuals 
orresponding tothe iterates {xj}k−1
j=0 of the sequential minimization algorithm.If rk = 0, the algorithm has 
onverged to x∗ = xk. Otherwise, we try to
hoose another A-
onjugate and non-zero sear
h dire
tion sk ∈ R

n sothat (10) remains valid if k is repla
ed by k + 1.
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Assume thus that rk 6= 0. Sin
e

rk = y −Axk = y −A(xk−1 + αk−1sk−1) = rk−1 − αk−1Ask−1and rk−1 and sk−1 belong by assumption to Kk, the new residual rkbelongs to Kk+1. Sin
e rk is orthogonal to {s0, . . . , sk−1}, whi
h span

Kk and belong to Kk+1, we must have
Kk+1 = span{s0, . . . , sk−1, rk} = span{r0, . . . , rk−1, rk}.Let us try to �nd the new sear
h dire
tion sk in the form

sk = rk + βk−1sk−1, βk−1 ∈ R.Note that this kind of ve
tor belongs to Kk+1 and, furthermore,

Kk+1 = span{s0, . . . , sk−1, rk} = span{s0, . . . , sk−1, sk}.Consequently, all we have to worry about is the A-
onjuga
y 
ondition:164



We want to 
hoose βk−1 ∈ R
k so that

sTj Ask = sTj Ark + βk−1s
T
j Ask−1

= (Asj)
Trk + βk−1s

T
j Ask−1 = 0 (11)for j = 0, . . . , k − 1. Be
ause {s0, . . . , sk−2} ⊂ Kk−1, we have

{As0, . . . , Ask−2} ⊂ Kk = span{s0, . . . , sk−1},and thus the ve
tors {As0, . . . , Ask−2} are orthogonal to rk. Hen
e, the

A-
onjuga
y of {s0, . . . , sk−1} yields that only the last of the equations(11) is non-trivial.Solving this equation for βk−1 results in the needed update rule

sk = rk + βk−1sk−1, βk−1 = − sTk−1Ark

sTk−1Ask−1
.
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Conjugate gradient methodTo sum up, we have arrived at the following algorithmChoose x0.Set k = 0, r0 = y −Ax0, s0 = r0;Repeat until the 
hosen stopping rule is satisfied:

αk = (sTk rk)/(sTkAsk);
xk+1 = xk + αksk;
rk+1 = rk − αkAsk; % Note: rk+1 = y −Axk − αkAsk

βk = −(sTkArk+1)/(s
T
kAsk);

sk+1 = rk+1 + βksk;
k ← k + 1;end
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However, the algorithm is usually presented in a slightly di�erent form.Assuming that the iteration has not yet 
onverged at the iterate xk, wededu
e the following formulae:Sin
e rk ⊥ sk−1,
sTk rk = (rk + βk−1sk−1)

Trk = ‖rk‖2,resulting in
αk =

‖rk‖2
sTkAsk

.In parti
ular, sin
e rk+1 ⊥ span{s0, . . . , sk} = Kk+1 ∋ rk, this meansthat

‖rk+1‖2 = rTk+1(rk − αkAsk) = − ‖rk‖
2

sTkAsk
rTk+1Ask = βk‖rk‖2.
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Solving for βk and plugging the obtained formulae for αk and βk intothe preliminary 
onjugate gradient algorithm leads to the standard formof the method:Choose x0.Set k = 0, r0 = y −Ax0, s0 = r0;Repeat until the 
hosen stopping rule is satisfied:

αk = ‖rk‖2/(sTkAsk);
xk+1 = xk + αksk;
rk+1 = rk − αkAsk;
βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βksk;
k ← k + 1;endNB: There is an error in the update formula for xk+1 in the textbook.
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Conjugate gradient method for inverse problemsA

ording to the above 
onstru
tion, if you apply the 
onjugate gradientmethod to the equation
Ax = y,where A ∈ R

n×n is symmetri
 and positive de�nite, you obtain the exa
tsolution � up to rounding errors � in at most n iteration steps, i.e.,

xn = x∗ = A−1y. However, su
h extensive iterating is not usuallyne
essary: The algorithm typi
ally 
onverges satisfa
torily mu
h qui
ker;see, e.g., 2. exer
ise of the 4. session, where a (pessimisti
) 
onvergen
erate is provided.When dealing with ill-posed problems, one should be even more 
arefuland terminate the iterations well before 
onvergen
e, in order to avoid�tting the solution to noise. One should, a
tually, be extremely 
autiousbe
ause the 
onjugate gradient method often 
onverges very fast.169



Let us be a bit more pre
ise and 
onsider a general ill-posed matrixequation
Ax = y,where A ∈ R

m×n and y ∈ R
m are given.In some 
ases, one may have m = n and, in addition, some priorinformation stating that A is � at least in theory � positive(semi-)de�nite. In su
h situation, one 
an apply the 
onjugate gradientalgorithm dire
tly on this original equation.In the general 
ase, one may still 
onsider the normal equation

ATAx = ATy,whi
h 
orresponds, in essen
e, to solving the original equation in theleast squares sense.
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Now, the system matrix ATA = (ATA)T ∈ R
n×n is symmetri
 andpositive semi-de�nite:

uTATAu = ‖Au‖2 > 0 for all u ∈ (Rn \Ker(A)).Hen
e, the 
onditions of the 
onjugate gradient algorithm are almostsatis�ed, and one may look for the solution of the inverse problem byusing the 
onjugate gradient algorithm with A repla
ed by ATA and yby ATy. (When implementing the algorithm in Matlab, bear in mindthat matrix-matrix produ
ts are typi
ally far more expensive thanmatrix-ve
tor produ
ts.)As a stopping 
ondition, one may try, e.g., the Morozov prin
iple for theoriginal equation: Terminate the iteration when
‖y −Axk‖ ≤ ǫfor some ǫ > 0, whi
h measures the amount of noise in y in some sense.171



An example: Heat distribution in a rod (revisited)Let us on
e again 
onsider the dis
retized inverse heat 
ondu
tionproblem in an insulated rod. We simulate the data in the exa
tly sameway as above and add the same amount of noise.The system matrix A = eTB , T = 0.1, is symmetri
 sin
e B issymmetri
. Moreover, the in�nite-dimensional version of A, i.e., ET , ispositive de�nite, and thus it is not far-fet
hed to assume that A is, atleast, 
lose to being positive semi-de�nite. (A symmetri
 matrix ispositive de�nite if and only if all of its eigenvalues are positive; a

ordingto Matlab the eigenvalues of A are either positive or extremely 
lose tozero.) Hen
e, it seems reasonable to try applying the 
onjugate gradientmethod dire
tly to the original equation.
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If we use the same value ǫ =
√

99 · 0.0012 = 9.95 · 10−3 for the Morozovdis
repan
y prin
iple as in the previous examples, the 
onjugate gradientmethod be
omes unstable before the stopping rule is satis�ed. However,for the value 1.2 ·
√

99 · 0.0012 the stopping rule is satis�ed after seveniterations.In the following, we visualize the evolution of the 
onjugate gradientiteration, show the norm of the residual ‖y −Axk‖ as a fun
tion of k,and plot the solution 
orresponding to the (�ne-tuned) dis
repan
yprin
iple.
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Next, we 
onsider the exa
tly same problem, but this time apply the
onjugate gradient method to the normal equation. As a stopping rulewe use the Morozov dis
repan
y prin
iple for the original equation, i.e.,we stop the iteration when
‖y −Axk‖ ≤ ǫ,where we use the `standard' ǫ =
√

99 · 0.0012 = 9.95 · 10−3.For some reason, the use of the normal equation makes the algorithmmore stable: the dis
repan
y prin
iple for this `original' ǫ is satis�ed afterseven iterations and the solution looks ni
er than when applying thealgorithm dire
tly to the original equation. (Bear in mind, however, that
onsidering the normal equation makes the algorithm slower sin
e morematrix-matrix or matrix-ve
tor produ
ts need to be 
omputed.)
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An example: Lapla
e transformLet f : [0,∞)→ R be some unknown fun
tion and assume that we havea

ess to noisy samples of its Lapla
e transform

Lf(s) =

∫ ∞

0

e−stf(t) dt, s ≥ 0,at some measurement points sj , j = 1, . . . ,m. The task is toapproximate f using the noisy values {Lf(sj)}mj=1 as data.Observe that for large t the kernel e−st is typi
ally very small, and hen
ethe `tail' of f does not a�e
t the Lapla
e transform as mu
h as itsvalues 
lose to the origin. In 
onsequen
e, re
onstru
ting f is anill-posed inverse problem.
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Dis
retizationIn order to 
ome up with a 
omputational model, we approximate theintegral of the Lapla
e transform as

Lf(sj) ≈
∫ T

0

e−sjtf(t) dt ≈
n∑

k=1

wke
−sjtkf(tk), j = 1, . . . ,m,where t1, . . . , tn ∈ [0, T ] are the nodes and w = (w1, . . . , wn)T ∈ R

n the
orresponding weights of the 
hosen quadrature rule. Noti
e that it isimpli
itly assumed that e−stf(t) is `small' for all t that are larger thanthe threshold T > 0.For example, if we de
ided to use the trapezoid rule on an equidistantmesh in the interval [0, T ], we would 
hoose h = T/(n− 1) and

w = (h/2, h, h, . . . , h, h, h/2)T and tk = (k − 1)hfor k = 1, . . . , n. 184



The above quadrature rule 
an be written in the matrix form

y = Ax,where x ∈ R
n and y ∈ R

m are given by
x = (f(t1), . . . , f(tn))T

y = (Lf(s1), . . . ,Lf(sm))T,and the elements of the matrix A ∈ R
m×n are de�ned as

(A)jk = wke
−sjtk , j = 1, . . . ,m, k = 1, . . . , n.
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In the following numeri
al examples, we 
hoose m = 91 sampling pointson a logarithmi
 grid:
log sj = − log 10 + 2

(j − 1)

m− 1
log 10, j = 1, . . . ,m,where log denotes the natural logarithm. Now, the points {log sj}mj=1form a uniform grid in the interval [− log(10), log(10)], and thus

{sj}mj=1 lie in the interval [0.1, 10], with half of the points between 0.1and 1. This re�e
ts our knowledge that the information in the Lapla
etransform is � very loosely speaking � 
on
entrated 
lose to the origin.We set n = 101 and 
hoose the nodes {tk}nk=1 and the weights w ∈ R
na

ording to the Gauss�Legendre quadrature rule in the interval [0, 5].(One 
ould use something less sophisti
ated, su
h as trapezoid rule inthis same interval, as well.)
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Simulation of dataWe 
hoose
f(t) =







t3 − 4t2 + 4t, 0 ≤ t < 2,

0, t ≥ 2.In this simple 
ase, the Lapla
e transform 
an be 
al
ulated expli
itlywith the help of partial integration:
Lf(s) =

4

s2
− 4

s3
(2 + e−2s) +

6

s4
(1− e−2s), s > 0.Consequently, we just 
ompute the value of Lf(s) at the 
hosensampling points {sj}mj=1 using this formula, add realizations of anormally distributed random variable with zero mean and standarddeviation 10−3 to ea
h sample, plug the resulting data into the ve
tor y,and we are ready to go.
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On inverse 
rimesThe most obvious form of inverse 
rime is to use the exa
tly samenumeri
al model to simulate the data and to 
arry out the inversion.Su
h a pro
edure results typi
ally in overly optimisti
 re
onstru
tions.Here, this form of inverse 
rime is avoided be
ause the data is simulatedusing an analyti
 formula and the re
onstru
tion pro
ess is based on aquadrature rule. However, if the expli
it form of Lf was not known, we
ould operate as follows:
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1. Choose two sets of node and sampling points {s̃j}m0

j=1 and {t̃k}n0

k=1,and {sj}mj=1 and {tk}nk=1.2. Use the �rst sets of points, {s̃j}m0

j=1 and {t̃k}n0

k=1, and the
orresponding `quadrature matrix' A = A0 to 
ompute Lf at thepoints {s̃j}m0

j=1.3. Use interpolation to approximate the value of Lf at the (typi
allysparser) set of sampling points {sj}mj=1, and add noise. (Seeinterp1 and interp2 in Matlab.)4. Test your inversion method by using the hereby obtained noisyversions of {Lf(sj)}mj=1 as data and the `quadrature matrix'
orresponding to the sets of points {sj}mj=1 and {tk}nk=1 as thesystem matrix A.Noti
e that in `real life' these kinds of problems do not o

ur be
auseyou do not simulate the data yourself.189



Numeri
al experimentsIn the following, we will apply the 
onsidered inversion methods to theabove introdu
ed dis
retized �inverse Lapla
e transform problem�:

Ax = y.If not stated otherwise, we utilize the Morozov dis
repan
y prin
iple with

ǫ = 10−3
√
m ≈ 9.5 · 10−3as the stopping rule, i.e., we terminate the iterations, or pi
k a spe
tral
ut-o� index, or 
hoose a regularization parameter so that theapproximate solution x̃ satis�es

‖y −Ax̃‖ ≃ ǫ.For the exa
t implementation of the Morozov stopping 
riterion fordi�erent algorithms, see the material of the previous le
tures.190



Target fun
tion and the nodes
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Lapla
e transform and the noisy measurements

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

192



Trun
ated singular value de
ompositionThe singular value de
omposition of A is

A = UΛV T,where Λ ∈ R
m×n has the (non-negative) singular values on its diagonal,and the 
olumns of V ∈ R

n×n and U ∈ R
m×m are 
omposed of the(extended) orthonormal basis {vj}nj=1 and {uj}mj=1, respe
tively.The trun
ated SVD solution for 1 ≤ k ≤ rank(A) is given by

xk = V Λ†
kU

Tywhere Λ†
k ∈ R

n×m has the elements 1/λ1, . . . , 1/λk, 0, . . . , 0 on itsdiagonal. (The singular values of our A are plotted on the next slide.)In the following, we show the evolution of xk as a fun
tion of k, presentthe Morozov dis
repan
y prin
iple solution and, for 
omparison, presentthe trun
ated SVD solution for no noise and k = 21 = rank(A)− 1.193
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Trun
ated SVD solutions for k = 1, . . . , 5
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Morozov dis
repan
y solution (k = 5)
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Trun
ated SVD solutions for k = 5, . . . , 8
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Trun
ated SVD solutions for k = 21 and no noise

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.2

0.4

0.6

0.8

1

1.2

198



Tikhonov regularized solutionThe Tikhonov regularized solution xδ ∈ R
n is the unique minimizer ofthe Tikhonov fun
tional

‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expli
itly by the formula
xδ = (ATA+ δI)−1ATy. (12)If one repla
es x in the penalty term of the Tikhonov fun
tional by Lx,for some L ∈ R

l×n, then the identity operator in (335) is repla
ed by

LTL � at least formally.In the following, we �rst use traditional Tikhonov regularization, andthen plug Lx in the penalty term, with L ∈ R
n×n being a di�eren
ematrix that approximates the se
ond spatial derivative on theinterval [0, 5]. 199



Traditional Tikhonov with δ = δMor ≈ 3.6 · 10−5 (solid),

δ = 103δMor (slashed) and δ = 10−3δMor (dotted)
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Smoothness Tikhonov with δMor ≈ 3.8 · 10−10 (solid),

δ = 103δMor (slashed) and δ = 10−3δMor (dotted)
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Landweber�Fridman iterationThe Landweber�Fridman iteration produ
es a sequen
e of approximatesolutions {xk}∞k=0 a

ording to the re
ursion rule

xk+1 = T (xk), x0 = 0,where
T (x) = x+ β(ATy − ATAx), β ∈ R.In order to a
hieve 
onvergen
e, the free parameter β should be 
hosenfrom the interval (0, 2/λ2

1), where λ1 is the largest singular value of A,i.e., the matrix norm of A. The larger the value of β in this interval, thefaster the 
onvergen
e. Here, ‖A‖ ≈ 2.05 and we 
hoose β = 0.45.In the following, we visualize the evolution of the Landweber�Fridmansequen
e and show the solution 
orresponding to the Morozovdis
repan
y prin
iple. (Note that the 
onvergen
e is really slow; there isno real possibility for �tting the solution to noise.)202



Residual ‖y −Axk‖ as a fun
tion of k
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Approximate solutions xk, k = 1, 101, 201, . . .
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Morozov dis
repan
y solution (k = 12 861)
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Ka
zmarz iteration (ART)The most basi
 form of Ka
zmarz iteration is to take zero as the initialguess and then iterate by proje
ting re
ursively onto the hyperplanesde�ned by the rows of the 
onsidered matrix equation. If aT
j ∈ R

1×ndenotes the jth row of the matrix A, then this algorithm is as follows:Set k = 0 and x0 = 0;Repeat until the 
hosen stopping rule is satisfied:

z0 = xk;for j = 1, . . . ,m

zj = zj−1 + (1/‖aj‖2)(yj − aT
j zj−1)aj;end

xk+1 = zm; k ← k + 1;endIn the 
onsidered 
ase, ART does not seem to 
onverge for theoriginal ǫ, and thus we use the dis
repan
y prin
iple with 1.2ǫ here.206



Residual ‖y −Axk‖ as a fun
tion of k
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Approximate solutions xk, k = 1, . . . , 790
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Morozov dis
repan
y solution (k = 790)
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Conjugate gradient methodWith 
onjugate gradient method one is for
ed to 
onsider the normalequation
ATAx = ATy.In this 
ase, the algorithm 
an be written, e.g., as follows (here x0 = 0):Choose x0. Set k = 0, r0 = ATy −AT(Ax0), s0 = r0;Repeat until the 
hosen stopping rule is satisfied:

zk = AT(Ask);
αk = ‖rk‖2/(sTk zk);
xk+1 = xk + αksk;
rk+1 = rk − αkzk;
βk = ‖rk+1‖2/‖rk‖2;
sk+1 = rk+1 + βksk;
k ← k + 1;end 210



Residual ‖y −Axk‖ as a fun
tion of k
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Approximate solutions xk, k = 1, . . . , 5
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Morozov dis
repan
y solution (k = 5)
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Approximate solutions xk, k = 5, . . . , 17
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Computational methods in inverse problemsJenni Heino, Nuutti Hyvönen,Matti Leinonen, Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiTenth le
ture, February 18, 2011.
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Computational methods in inverse problems, part IIThe se
ond part of the 
ourse 
on
entrates on the Bayesian approa
h toinverse problems.The le
tures are mainly based on the books:

• �J. Kaipio and E. Somersalo, Statisti
al and Computational InverseProblems, Springer, 2005� (parts of Chapter 3),

• �D. Calvetti and E. Somersalo, Introdu
tion to Bayesian S
ienti�
Computing. Ten Le
tures on Subje
tive Computing, Springer, 2007�.
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Statisti
al inversionIn the statisti
al approa
h to inverse problems, the leading idea is tore
ast the inverse problem in the form of statisti
al quest for information.

• Quantities are either dire
tly observable or unobservable.

• Some of the unobservable quantities are of primary interest, othersmay be 
onsidered to be of se
ondary interest.

• Quantities depend on ea
h other through models.

• The obje
tive of statisti
al inversion is to extra
t information on theunknown quantities of interest based on all available knowledgeabout the measurements, models between the parameters, andinformation that is available prior to the measurement.
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The statisti
al approa
h is based on the following prin
iples:1. All variables are modelled as random variables.2. The randomness des
ribes our degree of (or la
k of) information ontheir realizations.3. The information 
on
erning the values of the random variables is
oded in probability distributions.4. The solution of the inverse problem is the posterior probabilitydistribution of the quantities of interest (given the measurement).
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A 
lassi
al regularization method typi
ally produ
es a single estimate,using often a more or less ad ho
 removal of the ill-posedness of theproblem.In the statisti
al framework, the solution is a probability distribution that
ontains all information on the possible values of the variable of interest.This distribution 
an be used to obtain di�erent estimates and toevaluate their reliability, e.g., single estimates and 
redibility intervals.The statisti
al approa
h removes the ill-posedness by 
onsidering awell-posed extension of the inverse problem in the spa
e of probabilitydensities. When 
onstru
ting the well-posed extension, the prior beliefsare more expli
itly stated than in traditional regularization.
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Subje
tive probabilityExample: Tossing a 
oin.Assume that the odds of getting heads or tails are equal, i.e.,

P (heads) = P (tails) =
1

2
.Su
h an assumption is generally a

epted and 
an be veri�ed empiri
ally(empiri
al probability). This example re�e
ts the frequentist view, whereprobability 
an be seen as the relative frequen
y of o

urren
e in a set ofrepeated experiments.
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In 
onne
tion to Bayesian approa
h, one sometimes talks aboutsubje
tive probabilities. The inferen
e pro
ess 
ommonly in
orporatessubje
tive 
omponents that re�e
t the beliefs of, e.g., the person doingthe inferen
e (e.g., in the form of prior beliefs about the behaviour of theunknown).Examples:What is the probability of rain tomorrow?What is the probability that Finland will win a gold medal in the nextOlympi
 games?

221



On random variables and probabilitydensities
222



Probabilities and events (very informal)Let Ω 
ontain all possible events, and 
onsider a subset E ⊂ Ω. For theprobability P (E) of an event E, we require

0 ≤ P (E) ≤ 1.Furthermore, it is assumed that
P (Ω) = 1 and P (∅) = 0.Additivity: If A ∩B = ∅ for A,B ⊂ Ω, then
P (A ∪B) = P (A) + P (B).Two events A and B are 
alled independent, if
P (A ∩B) = P (A)P (B).223



The 
onditional probability of A on B is the probability that A happensprovided that B happens,
P (A |B) =

P (A ∩B)

P (B)
.

If A and B are mutually independent,
P (A |B) = P (A), P (B |A) = P (B).
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Real valued random variables (still informal)We denote random variables by 
apital letters and their realizations withlower 
ase letters. Let X : Ω→ R be a real valued random variable anddenote its probability density by π(x) = πX(x) ≥ 0.The probability of the event x ∈ B, B ⊂ R is obtained throughintegration

P{X(ω) ∈ B} = P (X−1(B)) =

∫

B

π(x)dx.In parti
ular,

P{X(ω) ∈ R} = P (Ω) =

∫ ∞

−∞
π(x)dx = 1.
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The expe
tation is the 
enter of mass of the probability density

E(X) =

∫

R

xπ(x)dx =: x̄.The varian
e is the expe
tation of the squared deviation from theexpe
tation
var(X) = σ2

X = E{(X − x̄)2} =

∫

R

(x− x̄)2π(x)dx.The joint probability density π(x, y) = πX,Y (x, y) of two randomvariables X and Y is
P{X ∈ A, Y ∈ B} =

∫∫

A×B

π(x, y)dxdy.The random variables X and Y are independent if
π(x, y) = π(x)π(y).226



The 
ovarian
e of X and Y is

cov(X,Y ) = E{(X − x̄)(Y − ȳ)}.Note that
cov(X,Y ) = E{XY } − E{X}E{Y }.The 
orrelation 
oe�
ient of X and Y is

corr(X,Y ) =
cov(X,Y )

σXσY
, σX =

√

var(X), σY =
√

var(Y ),or, equivalently, with the help of normalized random variables,

corr(X,Y ) = E{X̃Ỹ }, X̃ =
X − x̄
σX

, Ỹ =
Y − ȳ
σY

.Random variables are un
orrelated if their 
ovarian
e (or 
orrelation
oe�
ient) vanishes,

cov(X,Y ) = 0.227



If X and Y are independent, they are un
orrelated, sin
e

E{(X − x̄)(Y − ȳ)} = E{X − x̄}E{Y − ȳ} = 0.On the other hand, un
orrelated random variables are not ne
essarilyindependent.Given two random variables X and Y with joint probability density

π(x, y), the marginal density of X when Y may take any value, is

π(x) =

∫

R

π(x, y)dy.Analogously, the marginal density of Y is
π(y) =

∫

R

π(x, y)dx.
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The 
onditional probability density of X given Y is the probabilitydensity of X assuming that Y = y:

π(x | y) =
π(x, y)

π(y)
if π(y) 6= 0.Note that by the symmetry of the roles of X and Y , we have

π(x, y) = π(x | y)π(y) = π(y |x)π(x),whi
h leads to an important identity
π(x | y) =

π(y |x)π(x)

π(y)
,known as the Bayes formula.
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The 
onditional expe
tation or the 
onditional mean is the expe
tationof X given that Y = y:
E{X | y} =

∫

R

xπ(x | y)dx.The expe
tation of X 
an be 
omputed also via its 
onditionalexpe
tation:
E{X} =

∫

xπ(x)dx =

∫

x

(∫

π(x, y)dy

)

dx

=

∫

x

(∫

π(x | y)π(y)dy

)

dx

=

∫ (∫

xπ(x | y)dx
)

π(y)dy

=

∫

E{X | y}π(y)dy.
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Multivariate random variablesA multivariate random variable is a random variable

X =








X1...

Xn







,

where ea
h 
omponent Xi is a real s
alar valued random variable.The probability density of X is the joint probability density

πX(x) = π(x) = π(x1, . . . , xn) of its 
omponents.The 
orresponding expe
tation is
x̄ =

∫

Rn

xπ(x)dx ∈ R
n,
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or, 
omponentwise,
x̄i =

∫

Rn

xiπ(x)dx ∈ R, 1 ≤ i ≤ n.

The 
ovarian
e matrix is de�ned as
cov(X) =

∫

Rn

(x− x̄)(x− x̄)Tπ(x)dx ∈ R
n×n,or, 
omponentwise,

cov(X)ij =

∫

Rn

(xi − x̄i)(xj − x̄j)
Tπ(x)dx ∈ R, 1 ≤ i, j ≤ n.The 
ovarian
e matrix is symmetri
 and positive semi-de�nite.

232



The symmetry is impli
it in the de�nition of the 
ovarian
e matrix,whereas the positive semi-de�niteness follows by writing for v ∈ R
n that

vTcov(X)v =

∫

Rn

[vT(x− x̄)][(x− x̄)Tv]π(x)dx

=

∫

Rn

(vT(x− x̄))2π(x)dx ≥ 0.Note that the above expression measures the varian
e of X in thedire
tion v.The diagonal entries of the 
ovarian
e matrix are the varian
es of theindividual 
omponents of X . Indeed, let us denote by x′i ∈ R
n−1 theve
tor x with the ith 
omponent deleted, i.e.,

x′i = [x1, x2, . . . , xi−1, xi+1, . . . , xn]T.
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Then, we have
cov(X)ii =

∫

Rn

(xi − x̄i)
2π(x)dx

=

∫

R

(xi − x̄i)
2

(∫

Rn−1

π(xi, x
′
i)dx

′
i

)

dxi

=

∫

R

(xi − x̄i)
2π(xi)dxi

= var(Xi).The marginal and 
onditional probabilities for multivariate randomvariables are de�ned by the same formulas as for the univariate randomvariables.
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Example: Random variables waiting for the trainAssume that every day, ex
ept on Sundays, a train for your destinationleaves every S minutes from the station. On Sundays, the intervalbetween trains is 2S minutes. You arrive at the station with noinformation about the timetable of the trains (or of the day!!). What isyour expe
ted waiting time?De�ne a random variable, T = waiting time, whose distribution onworking days is
T ∼ π(t |working day) =

1

S
χS(t), χS(t) =







1, 0 ≤ t < S,

0, otherwise.On Sundays, the distribution of T is
T ∼ π(t | Sunday) =

1

2S
χ2S(t).
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On a working day, the expe
ted waiting time is

E{T |working day} =

∫

tπ(t |working day)dt =
1

S

∫ S

0

tdt =
S

2
.On Sundays, the expe
ted waiting time is two times as long.If you have no idea whi
h day of the week it is, you 
an give equalprobability to ea
h day. Thus,

π(working day) =
6

7
, π(Sunday) =

1

7
.To get the expe
ted waiting time regardless of the day of the week,marginalize over the days of the week:

E{T} = E{T |working day}π(working day) +E{T | Sunday}π(Sunday)

=
3S

7
+
S

7
=

4S

7
.
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Example: Poisson distributionA weak light sour
e emits photons that are 
ounted with a CCD(Charged Coupled Devi
e). The 
ounting pro
ess N(t),

N(t) = number of parti
les observed in [0, t] ∈ Nis an integer-valued random variable.Under some assumptions, it 
an be shown that N is a Poisson pro
ess:

P{N(t) = n} =
(λt)n

n!
e−λt, λ > 0.We now �x t = T = the re
ording time, de�ne a random variable

N = N(T ), and let θ = λT . We write
N ∼ Poisson(θ).
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We want to 
al
ulate the expe
tation and varian
e of this Poissonrandom variable. Sin
e the dis
rete probability density is

π(n) = P{N = n} =
θn

n!
e−θ, θ > 0,and our random variable takes on dis
rete values, in the de�nition of theexpe
tation we have an in�nite sum instead of an integral (a 
ountablenumber of probability masses), that is
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E{N} =
∞∑

n=0

nπ(n) = e−θ
∞∑

n=0

n
θn

n!

= e−θ
∞∑

n=1

θn

(n− 1)!
= e−θ

∞∑

n=0

θn+1

n!

= θe−θ
∞∑

n=0

θn

n!
︸ ︷︷ ︸

eθ

= θ.
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We 
al
ulate the varian
e of a Poisson random variable in a similar way,writing �rst
var(N) = E{(N − θ)2} = E{N2} − 2θE{N}

︸ ︷︷ ︸

=θ

+θ2

= E{N2} − θ2

=
∞∑

n=0

n2π(n)− θ2.

Substituting the expression of π(n), we thus get
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var(N) = e−θ
∞∑

n=0

n2 θ
n

n!
− θ2 = e−θ

∞∑

n=1

n
θn

(n− 1)!
− θ2

= e−θ
∞∑

n=0

(n+ 1)
θn+1

n!
− θ2

= θe−θ
∞∑

n=0

n
θn

n!
+ θe−θ

∞∑

n=0

θn

n!
− θ2

= θe−θ
(
(θ + 1)eθ

)
− θ2

= θ,that is, the mean and the varian
e 
oin
ide.
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Normal distributionsA random variable X ∈ R is normally distributed, or Gaussian, i.e.,

X ∼ N (x0, σ
2),if

P{X ≤ t} =
1√

2πσ2

∫ t

−∞
exp

(

− 1

2σ2
(x− x0)

2

)

dx.For X ∼ N (x0, σ
2), it holds that

E{X} = x0, var(X) = σ2.As a generalization, X ∈ R
n is Gaussian if its probability density is

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

,where x0 ∈ R
n, and Γ ∈ R

n×n is symmetri
 and positive de�nite.242



Gaussian random variables are widely used in statisti
s. They appearnaturally when ma
ros
opi
 measurements are averages of individualmi
ros
opi
 random e�e
ts.Examples: pressure and temperature.The Central Limit Theorem sheds light on this:Central Limit Theorem: Assume that real valued random variables

X1, X2, . . . are independent and identi
ally distributed, ea
h withexpe
tation µ and varian
e σ2. Then the distribution of

Zn =
1

σ
√
n

(X1 +X2 + . . .+Xn − nµ)
onverges to the distribution of a standard normal random variable

lim
n→∞

P{Zn ≤ x} =
1√
2π

∫ x

−∞
et2/2dt.
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Another interpretation of the Central Limit Theorem: If

Yn =
1

n

n∑

j=1

Xj ,

then for large n a good approximation for the probability distribution of

Y is

Y ∼ N (µ,
σ2

n
).
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Example: Poisson distribution (revisited)One impli
ation of the Central Limit Theorem is that the Poissondistribution 
an be approximated with a Gaussian distribution if theexpe
tation θ is large.Intuitive reasoning based on the CCD 
amera: Assume for simpli
itythat the expe
tation θ is a positive integer. The total photon 
ount 
anthen be viewed as a sum of sub-
ounts on θ ∈ N smaller 
ounter units ofequal size. These sub-
ounts 
an in turn be viewed as mutuallyindependent Poisson distributed random variables with expe
tation (andvarian
e) 1. Now, it follows from the Central Limit Theorem that as θin
reases, the sum of the sub-
ounts approa
hes a normally distributedvariable with mean and varian
e θ.
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Let us test this hypothesis numeri
ally. We plot the Poisson probabilitydistribution
πPoisson(n | θ) =

θn

n!
e−θas a fun
tion of n ∈ N, and 
ompare it to the Gaussian approximation

πGaussian(x | θ, θ) =
1√
2πθ

exp

(

− 1

2θ
(x− θ)2

)

as a fun
tion of x ∈ R+, for in
reasing values of θ > 0.
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Inverse problems and Bayes' formula

249



Classi
al setup for inverse problems:

y = f(x, e),where

• y ∈ R
m is the measured quantity,

• x ∈ R
n is the quantity we seek to get information about,

• e ∈ R
k 
ontains the poorly known parameters and noise, and

• f : R
n × R

k → R
m is the model.
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In the statisti
al setup, all parameters are viewed as random variables,and the 
lassi
al model is repla
ed by

Y = f(X,E).Noti
e that the probability distributions of the three random variables

X,Y and E depend on ea
h other.Nomen
lature:
Y is 
alled the measurement, and its realization yobs the data.

X is the unobservable variable of primary interest and 
alled theunknown.The other variables E that are neither observable nor of primary interestare 
alled parameters or noise.
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Prior densityEven before performing the measurement, we typi
ally have someknowledge about the variable X . This information is 
oded in aprobability density x 7→ πpr(x) 
alled the prior density.Likelihood fun
tionThe 
onditional probability density of Y in 
ase we know the value ofthe unknown, i.e., X = x, is 
alled the likelihood fun
tion:

π(y |x) =
π(x, y)

πpr(x)
, if πpr(x) 6= 0.
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Posterior densityGiven the measurement data Y = yobs, the 
onditional probabilitydensity
π(x | yobs) =

π(x, yobs)

π(yobs)
, if π(yobs) =

∫

Rn

π(x, yobs)dx 6= 0,is 
alled the posterior density of X .The posterior density expresses what we know about X after realizingthe observation Y = yobs.
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Inverse problem in the Bayesian frameworkGiven the data Y = yobs, �nd the 
onditional probability density

π(x | yobs) of the variable X .
254



Bayes theorem of inverse problemsAssume that the random variable X ∈ R
n has a known prior probabilitydensity πpr(x) and the data 
onsist of the observed value yobs of anobservable random variable Y ∈ R

m su
h that π(yobs) > 0. Then, theposterior probability density of X , given the data yobs, is

πpost(x) = π(x | yobs) =
πpr(x)π(yobs |x)

π(yobs)
.In pra
ti
e, the marginal density π(yobs) plays a role of a norming
onstant and is often not important.
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Solving an inverse problem in the Bayesian framework1. Based on all available prior information on the unknown X , �nd aprior probability density πpr that re�e
ts this information as well aspossible.2. Find the likelihood fun
tion π(y |x) that des
ribes the interrelationbetween the observation and the unknown.3. Develop methods to explore the posterior probability density.
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Estimators
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Maximum a posteriori estimate (MAP)

xMAP = arg max
x∈R

n
π(x | y)

Existen
e or uniqueness is not guaranteed.Finding the MAP estimate requires solution of an optimization problem,using, e.g, iterative gradient-based methods.Conditional mean (CM) estimate is de�ned as
xCM = E{x | y} =

∫

Rn

xπ(x | y)dxprovided that the integral 
onverges.Requires solving an integration problem. In high-dimensional spa
es, thismay require spe
ial te
hniques (sampling).
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Maximum likelihood (ML) estimate

xML = arg max
x∈R

n
π(y |x)

Answers the question: Whi
h value of the unknown is most likely toprodu
e the measured data?The ML estimate is a non-Bayesian estimate, and in the 
ase of ill-posedinverse problems, often not useful. Loosely speaking, it 
orresponds tosolving a 
lassi
al inverse problem without regularization.
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Conditional 
ovarian
e is a `spread estimator':

cov(x | y) =

∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx ∈ R
n×n

Requires solving an integration problem.Bayesian 
redibility setGiven p, 0 < p < 100, the 
redibility set Dp of p% is de�ned throughthe 
onditions
∫

Dp

π(x | y)dx =
p

100
, π(x | y)

∣
∣
x∈∂Dp

= constant,and π(x | y) ≥ π(z | y) for all x ∈ Dp and z /∈ Dp. The boundary of Dpis an equiprobability hypersurfa
e en
losing p% of the mass of theposterior distribution. (Noti
e that Dp is not ne
essarily well de�ned.)
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For a single 
omponent, one 
an look at the symmetri
 interval of agiven 
redibility: The 
onditional marginal density of the kth 
omponent

Xk of X is obtained as
π(xk | y) =

∫

Rn−1

π(x1, . . . , xn | y)dx1 · · · dxk−1dxk+1 · · · dxn.The end points a and b, a < b, of the 
redibility interval Ik(p) ⊂ R witha given p, 0 < p < 100, are determined from the 
onditions

∫ a

−∞
π(xk | y)dxk =

∫ ∞

b

π(xk | y)dxk =
1

2
− p

200
.(Unfortunately, these 
onditions do not always de�ne Ik(p) uniquely.)
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An Example: xMAP and xCM estimatesIn this example, we 
ompare the xMAP and xCM estimates in a simpleone-dimensional 
ase. Let X ∈ R and assume that the posterior density

πpost(x) of X is given by
πpost(x) =

α

σ0
φ

(
x

σ0

)

+
1− α
σ1

φ

(
x− 1

σ1

)

,where 0 < α < 1, σ0, σ1 > 0, and ψ is the standard Gaussian density,

φ(x) =
1√
2π
e−x2/2.
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In this 
ase, we have
xCM = 1− α,and for small σ0 and σ1 it is a good estimate that

xMAP ≈







0 if α/σ0 & (1− α)/σ1,

1 if α/σ0 . (1− α)/σ1.We investigate two di�erent 
hoi
es of the parameters α, σ0, σ1, namelya) α = 0.5, σ0 = 0.08 and σ1 = 0.04,b) α = 0.01, σ0 = 0.001 and σ1 = 0.1.Note that in 
ase b), α = σ0/σ1, whi
h means that α/σ0 > (1− α)/σ1,and thus xMAP ≈ 0 should be the valid 
ase. (You 
an easily verify thisfa
t numeri
ally.)
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Let us also 
onsider the posterior varian
e

σ2 =

∫ ∞

−∞
(x− xCM)2πpost(x)dx =

∫ ∞

−∞
x2πpost(x)dx− x2

CM,whi
h 
an be 
al
ulated analyti
ally in our simple setting:

σ2 = ασ2
0 + (1− α)(σ2

1 + 1)− (1− α)2.In the following images, we have visualized the intervals of length 2σ,i.e., of length two times the standard deviation, 
entered at xCM forboth sets of parameters.Noti
e that when the 
onditional mean gives a poor estimate, this isre�e
ted as a larger varian
e.
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Constru
tion of the likelihood fun
tion
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The likelihood fun
tion answers the question: If we knew theunknown x, how would the measurements be distributed?What makes the data deviate from the predi
ted value given by ourobservation model?Some 
ommon sour
es:1. measurement noise in the data,2. in
ompleteness of the observation model (e.g., dis
retization errors,the redu
ed nature of the model as 
ompared to the "reality").Commonly used te
hniques in 
onstru
tion of the likelihood fun
tion(and priors) in
lude 
onditioning (inspe
t one variable at the time) andmarginalization (eliminate variables of se
ondary interest).
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Additive noiseVery often, the noise is modelled as additive and independent of X . Thismeans that the sto
hasti
 model is

Y = f(X) +E.Let us assume that the probability distribution of the noise is known:

P{E ∈ B} =

∫

B

πnoise(e)de, B ∈ R
m.

Be
ause X and E are mutually independent, �xing X = x does not alterthe probability distribution of E. Hen
e, Y 
onditioned on X = x isdistributed as E shifted by the 
onstant f(x):
π(y |x) = πnoise(y − f(x)).
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If the prior probability density of X is πpr, we thus obtain from theBayes formula that
π(x | y) ∝ πpr(x)πnoise(y − f(x)).If the unknown X and the noise E are not mutually independent, weneed to know the 
onditional density of the noise

P{E ∈ B |X = x} =

∫

B

πnoise(e |x)de.Then, we may write

π(y |x) =

∫

Rm

π(y, e |x)de =

∫

Rm

π(y |x, e)πnoise(e |x)de.
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If both X = x and E = e are �xed, Y = f(x) + e, and hen
e

π(y |x, e) = δ(y − f(x)− e).Substituting π(y |x, e) into the last formula of the pre
eding slide thusyields

π(y |x) = πnoise(y − f(x) |x),and on
e again from the Bayes formula we get that
π(x | y) ∝ πpr(x)πnoise(y − f(x) |x).
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Example: Additive independent noiseA simple low-dimensional example: a linear model

Y = AX +E,where X ∈ R
2 and Y,E ∈ R

3 are random variables, and

A =







1 −1

1 −2

2 1







is deterministi
. Assume that E has mutually independent normallydistributed 
omponents with zero mean and varian
e σ2 = 0.09, i.e.,

πnoise(e) ∝ exp

(

− 1

2σ2
‖e‖2

)

.
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Our only prior information is that

P{|Xj| > 2} = 0, j = 1, 2,whi
h we write in the form of a prior density via

πpr(x) =
χQ(x)

16
,where χQ is the 
hara
teristi
 fun
tion of the square [−2, 2]× [−2, 2].The posterior density is then

π(x | y) ∝ χQ(x) exp

(

− 1

2σ2
‖y −Ax‖2

)

.

Suppose that the true value of X is x0 = [1, 1]T. We simulate the datathrough y = Ax0 + e, where e is drawn from πnoise.The following �gure illustrates the posterior density with six di�erentrealizations of E. Note that in this 
ase the prior hardly plays any role.273
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Constru
tion of the likelihood fun
tion(
ontinued)
276



General noise modelAssume that we have an observation model of the type Y = f(X,E),where X ∈ R
n is the unknown, Y ∈ R

m is the measurement and

E ∈ R
k is the noise/parameter ve
tor. Sin
e �xing X and E determinesthe value of Y , we may write

π(y |x, e) = δ(y − f(x, e)).In 
onsequen
e,

π(y |x) =

∫

Rk

π(y, e |x)de =

∫

Rk

δ(y − f(x, e))πnoise(e |x)de.
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Change of variablesConsider two random variables X ∈ R
n and Y ∈ R

n that are related viathe formula
Y = f(X),where f is 
ontinuously di�erentiable and inje
tive (these 
onditions 
anbe relaxed). Suppose we know the probability density of Y , namely πY .Then, for a Borel set B ⊂ R

n, it holds that
P{X ∈ B} = P{Y ∈ f(B)} =

∫

f(B)

πY (y)dy

=

∫

B

πY (f(x))|detDf(x)|dxwhere Df(x) ∈ R
n×n is the di�erential or the Ja
obian matrix of f . Asa 
onsequen
e,

πX(x) = πY (f(x))| detDf(x)|.278



Example: multipli
ative noiseConsider an ampli�er that takes in a signal f(t) > 0 and sends it outmultiplied by a 
onstant fa
tor α > 1. The ideal model for the output isthus
g(t) = αf(t), 0 ≤ t ≤ T.Suppose that the ampli�
ation fa
tor is not a 
onstant but �u
tuatesslightly around a mean value α0 > 0 as a fun
tion of time. In order towrite a likelihood model for the output, we �rst dis
retize the signal:

xj = f(tj), yj = g(tj), 0 = t1 < t2 < · · · < tn = T.Let the ampli�
ation at t = tj be aj , i.e.,
yj = ajxj , 1 ≤ j ≤ n,and introdu
e the sto
hasti
 extension:
Yj = AjXj , 1 ≤ j ≤ n.279



In ve
tor notation, this reads

Y = A.X,with the dot denoting 
omponentwise multipli
ation of the ve
tors

A,X ∈ R
n; we also use a similar notation for 
omponentwise division.Assume that A is independent of X and has the probability density

A ∼ πnoise(a).To �nd the likelihood density of Y , 
onditioned on X = x su
h that

xj > 0 for all j = 1, . . . n, we write
Aj =

Yj

xj
, 1 ≤ j ≤ n.Thus, we obtain by the 
hange of variables formula that

π(y |x) =
1

x1x2 · · ·xn
πnoise

(y.

x

)

.
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As an example, assume that the 
omponents of A ∈ R
n are mutuallyindependent and log-normally distributed:

Wi := logAi ∼ N (w0, σ
2), w0 = logα0.To �nd an expli
it formula for the density of A, we note that if

w = log a, where the logarithm is applied 
omponentwise, we have

dw =
1

a1a2 · · · an
da for a1, . . . , an > 0.Thus, the probability density of A vanishes if any of the 
omponents of

a is zero or negative, and otherwise it holds that
πnoise(a) =

1

a1a2 · · ·an
exp

(

− 1

2σ2
‖log(a/α0)‖2

)

.
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By substituting this formula in
π(y |x) =

1

x1x2 · · ·xn
πnoise

(y.

x

)

,we �nd that
π(y |x) ∝ 1

y1y2 · · · yn
exp

(

− 1

2σ2

∥
∥
∥
∥
log

(
y.

α0x

)∥
∥
∥
∥

2
)

.

for y ∈ R
n su
h that yj > 0 for all j = 1, . . . , n, and zero for other

y ∈ R
n. (Re
all that it was assumed to begin with that the 
omponentsof x are positive.)
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In
ompletely known forward modelConsider having a noisy measurement with an in
ompletely knownforward model: The deterministi
 model with additive noise is

y = A(v)x+ e, y, e ∈ R
m, x ∈ R

n and A(v) ∈ R
m×n, where A(v)depends on a parameter ve
tor v ∈ R

k.The 
orresponding sto
hasti
 extension is
Y = A(V )X +E.Assume that E, X and V are mutually independent. How to 
onstru
tthe likelihood model π(y |x), assuming that the noise is distributeda

ording to πnoise and the parameter a

ording to πparam?
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To begin with, �x X = x and V = v in order to get the 
onditionaldensity of Y :
π(y |x, v) = πnoise(y −A(v)x).Subsequently, we marginalize with respe
t to the parameter V whi
h isof se
ondary interest:

π(y |x) =

∫

Rk

π(y, v |x)dv =

∫

Rk

π(y |x, v)πparam(v)dv

=

∫

Rk

πnoise(y −A(v)x)πparam(v)dv.
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On sampling
285



Before moving on to 
onstru
tion of priors, we tou
h the subje
t of howto draw a sample of realizations from a given probability distribution.Why is su
h 
onsideration relevant?
• Visual inspe
tion of priors, and
• estimation of integrals of the type

I =

∫

f(x)π(x)dxwith the help of Markov 
hain Monte Carlo (MCMC) te
hniques.
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In what follows, we assume to have random number generators for twoelementary distributions at our disposal:

• Standard normal distribution
π(x) =

1√
2π

exp

(

−1

2
x2

)

;in Matlab the 
ommand randn.
• Uniform distribution over the interval [0, 1],

π(x) = χ[0,1](x);in Matlab the 
ommand rand.
287



Sampling from Gaussian distributionsSuppose that we want to 
reate a sample of realizations for amultivariate Gaussian random variable X ∼ N (x0,Γ), with theprobability density
π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
(x− x0)

TΓ−1(x− x0)

)

.

Sin
e Γ−1 is (by assumption) symmetri
 and positive de�nite, it has aCholesky de
omposition
Γ−1 = RTR,where R is an upper triangular matrix. Noti
e that the probabilitydensity of X 
an alternatively be written as

π(x) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
‖R(x− x0)‖2

)

.
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En
ouraged by this observation, we de�ne a new random variable

W = R(X − x0) ⇐⇒ X = R−1W + x0,whi
h, in parti
ular, means that
πW (w) = πX(R−1w + x0)|det(R−1)| = πX(R−1w + x0)|det(R)|−1.Using the identity

det(Γ)−1 = det(Γ−1) = det(RT) det(R) = det(R)2,leads �nally to the formula
π(w) =

1

(2π)n/2
exp

(

−1

2
‖w‖2

)

.In 
onsequen
e, W is Gaussian white noise, i.e.,
W ∼ N (0, I).289



This transformation is 
alled the whitening of X and the Cholesky fa
tor

R of the inverse of the 
ovarian
e the whitening matrix.If the whitening matrix is known, a random draw from a generalGaussian density 
an be generated as follows:1. Draw w ∈ R
n from the Gaussian white noise density.2. Compute the sought for realization x ∈ R

n by solving the linearsystem

w = R(x− x0),whi
h is almost trivial sin
e R is triangular.
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Random draws from non-Gaussian densities usingdire
t samplingLet us next 
onsider how to draw a random sample dire
tly from thea
tual distribution in one dimension.Let X be a real valued random variable with probability density π(x)su
h that π(x) = 0 only at isolated points (this assumption 
an berelaxed). De�ne the 
umulative distribution fun
tion via

Φ(z) =

∫ z

−∞
π(x)dx.Due to the assumptions on π, it follows from the fundamental theoremof 
al
ulus that Φ is stri
tly in
reasing. In parti
ular, Φ : R→ (0, 1) hasan inverse Φ−1 : (0, 1)→ R.
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De�ne a new random variable,

T = Φ(X).Lemma. T ∼ Uniform([0, 1]).Proof. Observe �rst that,
P{T < a} = P{Φ(X) < a} = P{X < Φ−1(a)}, 0 < a < 1.On the other hand, due to the de�nition of a probability density,

P{X < Φ−1(a)} =

∫ Φ−1(a)

−∞
π(x)dx =

∫ Φ−1(a)

−∞
Φ′(x)dx

= Φ(Φ−1(a))− lim
x→−∞

Φ(x) = a− 0 = a,whi
h just means that T is distributed uniformly over the interval [0, 1].
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An algorithm for drawing from the density π:1. Draw t ∼ Uniform([0, 1]),2. Cal
ulate x = Φ−1(t).This te
hnique is sometimes referred to as the Golden Rule.
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Example: Gaussian distribution with a bound 
onstraintConsider a one-dimensional normal distribution with a bound 
onstraint,

π(x) ∝ πc(x) exp

(

−1

2
x2

)

,where
πc(x) =







1 if x > c,

0 if x ≤ cfor some c ∈ R. Our aim is to generate a sample from this distribution.In this 
ase, the 
umulative distribution fun
tion is
Φ(z) = C

∫ z

c

e−x2/2dx, C =

(∫ ∞

c

e−x2/2dx

)−1

,where C > 0 is the normalizing 
onstant of the 
orresponding probabilitydensity. 294



The fun
tion Φ has to be 
al
ulated numeri
ally. Fortunately, there areroutines available to do the needed integration: In Matlab, the built-inerror fun
tion, erf, is de�ned as

erf(t) =
2√
π

∫ t

0

e−s2

ds.We observe that
Φ(z) = C

(∫ z

0

−
∫ c

0

)

e−x2/2dx =
√

2C

(
∫ z/

√
2

0

−
∫ c/

√
2

0

)

e−s2

ds

=

√
π

2
C
(

erf(z/
√

2)− erf(c/
√

2)
)

.Sin
e erf(t)→ 1 as t→∞, the same logi
 also shows that
C =

(√
π

2

(

1− erf(c/
√

2)
))−1

.
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Altogether we have
Φ(z) =

erf(z/
√

2)− erf(c/
√

2)

1− erf(c/
√

2)
.

How about the inverse then?Setting
Φ(z) = t ⇐⇒ z = Φ−1(t),we �nd through a straightforward algebrai
 manipulation that

erf(z/
√

2) = t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2),or in other words (see erfinv in Matlab)
Φ−1(t) =

√
2 erf−1

(

t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2)
)

.
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The generation of random draws in Matlab is then very simple:a = erf(
/sqrt(2));t = rand;z = sqrt(2)*erfinv(t*(1-a)+a);Note: If the bound c is large, the above program does not work be
ausethe error fun
tion saturates qui
kly to unity. To be more pre
ise, e.g. for
=10, Matlab interprets that a in the above 
ode is exa
tly one, whi
hmeans that the value of z is Inf independently of the random draw t.An alternative implementation in this 
ase is to perform the numeri
alintegration only at the region we are interested in. This approa
h isdis
ussed at the exer
ises.
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Prior models
299



The prior density should re�e
t our beliefs on the unknown variable ofinterest before taking the measurements into a

ount.Often, the prior knowledge is qualitative in nature, and transferring theinformation into quantitative form expressed through a prior density 
anbe 
hallenging.A good prior should have the following property: Denote by x a possiblerealization of a random variable X ∼ πpr(x). If E is a 
olle
tion ofexpe
ted (i.e., something you would expe
t to see) ve
tors x and U is a
olle
tion of unexpe
ted ones, then it should hold that

πpr(x)≫ πpr(x
′) when x ∈ E, x′ ∈ U,i.e., the prior assigns a 
learly higher probability to the realization thatwe expe
t to see.
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Example: Impulse prior densitiesConsider, e.g., an imaging problem where the unknown is the dis
retizeddistribution of a physi
al parameter, i.e., a pixel image.Assume that our prior information is that the image 
ontains small andwell lo
alized obje
ts in almost 
onstant ba
kground. In su
h a 
ase, onemay try impulse prior densities, whi
h have low average amplitude butallow outliers. (The `tail' of an impulse prior density is long, althoughthe expe
ted value is small.)Examples of impulse prior densities: Let x ∈ R
n represent a pixel image,where the 
omponent xj is the intensity of the jth pixel. (In all of thefollowing examples, Xj and Xk are assumed to be independent for

j 6= k.)
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The ℓ1 prior:
πpr(x) =

(α

2

)n

exp(−α‖x‖1), α > 0.where the ℓ1-norm is de�ned as
‖x‖1 =

n∑

j=1

|xj |.

More enhan
ed impulse noise e�e
t 
an be obtained by taking evensmaller power of the 
omponents of x:
πpr(x) ∝ exp



−α
n∑

j=1

|xj |p


 , 0 < p < 1, α > 0.

Su
h priors are studied in the seventh exer
ise session.
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Another 
hoi
e is the Cau
hy density that is de�ned via

πpr(x) =
(α

π

)n n∏

j=1

1

1 + α2x2
j

, α > 0.

The entropy of an image is de�ned as
E(x) = −

n∑

j=1

xj log
xj

x0
,

where it is assumed that xj > 0, j = 1, . . . n, and x0 > 0 is a given
onstant. The entropy density is then of the form
π(x) ∝ exp

(
αE(x)

)
, α > 0.
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Log-normal density: The logarithm of a single pixel x ∈ R is normallydistributed, i.e.,
w = log x, w ∼ N (w0, σ

2).The expli
it density of x is then
π(x) =

1

x
√

2πσ2
exp

(

− 1

2σ2
(log x− w0)

2

)

, x > 0.

Do these priors represent our beliefs? How do these priors looks like?
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To underline the interpretation as a pixel image, we add a positivity
onstraint to the above introdu
ed priors, that is, we make therepla
ement
πpr(x)→ Cπ+(x)πpr(x),where π+(x) is one if all 
omponents of x are positive, and zerootherwise. Here, C is a normalizing 
onstant: If πpr(x) is a probabilitydensity, the same does not typi
ally apply to π+(x)πpr(x) withoutappropriate s
aling.For visual inspe
tion we make random draws of pixel images from the
onstrained densities. As all 
omponents are independent, drawing 
anbe done 
omponentwise.To make the draws from one-dimensional densities, we 
al
ulate the
umulative distribution of the prior density and employ the Golden Rule,as presented at the previous le
ture.305



Example: Drawing from ℓ1 priorThe one-dimensional 
umulative distribution of the positively
onstrained ℓ1 prior is
Φ(t) = α

∫ t

0

e−αsds = 1− e−αt.The inverse 
umulative distribution is thus
Φ−1(t) = − 1

α
log(1− t).For ea
h pixel xj , we draw tj from the uniform distribution

Uniform([0, 1]) and 
al
ulate xj = −1/α log(1− tj).
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The Matlab 
ode for doing this is very simple:A=rand(100,100);alfa=1;AL1inv=-1/alfa*log(1-A);figureimages
(AL1inv)
olormap grayaxis square
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Two random draws of pixel images from a ℓ1-prior.
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Example: Drawing from Cau
hy priorThe one-dimensional 
umulative distribution of the positively
onstrained Cau
hy prior is
Φ(t) =

2α

π

∫ t

0

1

1 + α2s2
ds =

2

π
arctan(αt),meaning that the inverse 
umulative distribution is

Φ−1(t) =
1

α
tan

πt

2
.As in the 
ase of the ℓ1-prior, we draw tj from the uniform distributionand then 
al
ulate xj = 1/α tan(πt/2).
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Two random draws of pixel images from a Cau
hy prior.
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How do these priors 
ompare to white noise?Let us 
onsider a Gaussian prior with a positivity 
onstraint, i.e.,

πpr(x) ∝ π+(x) exp

(

− 1

2α2
‖x‖2

)

, α > 0.Re
all that at the previous le
ture we implemented drawing from astandard Gaussian distribution with a bound c. In parti
ular, we wereable to 
al
ulate the one-dimensional 
umulative distribution fun
tion

Φ−1(t) =
√

2 erf−1
(

t
(
1− erf(c/

√
2)
)

+ erf(c/
√

2)
)

.A similar derivation for c = 0 and the varian
e α2 instead of 1 yields inthe 
urrent 
ase that

Φ−1(t) =
√

2α erf−1(t).
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L
1
 prior Cauchy prior White noise prior
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Dis
ontinuitiesPrior information: The unknown is a fun
tion of, say, time. It is knownto be relatively stable for long periods of time, but 
ontains now andthen dis
ontinuities. We may also have information on the size of thejumps or the rate of o

urren
e of the dis
ontinuities.A more 
on
rete example: Unknown is a fun
tion f : [0, 1]→ R. Weknow that f(0) = 0 and that the fun
tion may have large jumps at a fewlo
ations.After dis
retizing f , impulse priors 
an be used to 
onstru
t a prior onthe �nite di�eren
e approximation of the derivative of f .
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Dis
retization of the interval [0, 1]: Choose grid points tj = j/N ,

j = 0, . . . , N , and set xj = f(tj).We write a Cau
hy-type prior density

πpr(x) =
(α

π

)N N∏

j=1

1

1 + α2(xj − xj−1)2that 
ontrols the jumps between the adja
ent 
omponents of x ∈ R
N+1.In parti
ular, the 
omponents of X are not independent. (In addition tothis prior, we know that X0 = x0 = 0.)To make draws from the above density, we de�ne new variables

ξj = xj − xj−1, 1 ≤ j ≤ N,whi
h are the 
hanges in the fun
tion of interest between adja
ent gridpoints. 314



Noti
e that x̃ = [x1, . . . , xN ]T ∈ R
N satis�es

x̃ = Aξ,where A ∈ R
N×N is a lower triangular matrix su
h that Ajk = 1 for

j ≥ k. Hen
e, it follows, e.g., from the 
hange of variables rule forprobability densities that
πpr(ξ) =

(α

π

)N N∏

j=1

1

1 + α2ξ2j
.

In parti
ular, due to the produ
t form of πpr(ξ), the 
omponents of Ξare mutually independent, and 
an thus be drawn from aone-dimensional Cau
hy density.Subsequently, a random draw from the distribution of X 
an be
onstru
ted by re
alling that x0 = 0 and using the relation x̃ = Aξ.315
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Sample-based densitiesAssume that we have a large sample of realizations of a random variable

X ∈ R
n:

S = {x1, x2, . . . , xN}.One way to 
onstru
t a prior density for X is to approximate π(x) basedon S.Estimates of the mean and the 
ovarian
e:
E{X} ≈ 1

N

N∑

j=1

xj =: x̄,

cov(X) = E{XXT} −E{X}E{X}T ≈ 1

N

N∑

j=1

xj(xj)T − x̄x̄T =: Γ.(Noti
e that Γ is not the unbiased sample 
ovarian
e estimator, but letus anyway follow the notation of the text book.)317



The eigenvalue de
omposition of Γ is

Γ = UDUT,where U ∈ R
n×n is orthogonal and has the eigenve
tors of Γ as its
olumns, and D ∈ R

n×n is diagonal with the eigenvalues

d1 ≥ . . . ≥ dn ≥ 0 as its diagonal entries. (Note that Γ is 
learlysymmetri
 and positive semi-de�nite, and thus it has a full set ofeigenve
tors with non-negative eigenvalues.)The ve
tors xj , j = 1, . . . , N , are typi
ally `somewhat similar' and thematrix Γ 
an 
onsequently be singular or almost singular: Theeigenvalues often satisfy dj ≈ 0 for j > r, where 1 < r < n is some
ut-o� index. In other words, the di�eren
e X −E{X} does not seemto vary mu
h in the dire
tion of the eigenve
tors ur+1, . . . , un.
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Assume this is the 
ase. Then, one 
an postulate that the values of therandom variable X −E(X) lie `with a high probability' in the subspa
espanned by the �rst r eigenve
tors of Γ. One way of trying to state thisinformation quantitatively, is to introdu
e a subspa
e prior

π(x) ∝ exp
(
−α‖(1− P )(x− x̄)‖2

)
,where P is the orthogonal proje
tor R

n → span{u1, . . . , ur}. Theparameter α > 0 
ontrols how mu
h X − x̄ is allowed to vary from thesubspa
e span{u1, . . . , ur}. (Take note that su
h a subspa
e prior is nota probability density in the traditional sense.)
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If Γ is not almost singular, the inverse Γ−1 
an be 
omputed stably. Inthis 
ase, the most straightforward way of approximating the (prior)probability density of X is to introdu
e the Gaussian approximation:

πpr(x) ∝ exp

(

−1

2
(x− x̄)TΓ−1(x− x̄)

)

.Depending on the higher order statisti
s of X , this may or may notprovide a good approximation for the distribution of X .
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Posterior density and a simple linear modelConsider a linear system of equations with noisy right hand side,

y = Ax+ e, x ∈ R
n, y, e ∈ R

m, A ∈ R
m×n.The 
orresponding sto
hasti
 extension reads

Y = AX +E,where X , Y and E are random variables.A very 
ommon assumption: X and E are independent and Gaussian,

X ∼ N (0, γ2Γ), E ∼ N (0, σ2I),where we have assumed that both X and E have zero mean. (If thiswas not the 
ase, the means 
ould be subtra
ted from the respe
tiverandom variables.) 321



The 
ovarian
e of the noise indi
ates that the 
omponents of Y are
ontaminated by independent and identi
ally distributed Gaussianrandom variables of varian
e σ2. On the other hand, the priordistribution of X is assumed to have a bit more stru
ture: Γ need not bediagonal and the parameter γ2 is introdu
ed for 
ontrolling the`magnitude' of the (prior) 
ovarian
e.In other words, the prior density is of the form
πpr(x) ∝ exp

(

− 1

2γ2
xTΓ−1x

)

,and assuming that the noise level σ2 is known, the likelihood fun
tionreads as

π(y |x) ∝ exp

(

− 1

2σ2
‖y −Ax‖2

)

.
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It follows from the Bayes formula that the posterior density is

π(x | y) ∝ πpr(x)π(y |x)

∝ exp

(

− 1

2γ2
xTΓ−1x− 1

2σ2
‖y −Ax‖2

)

= exp(−V (x | y)),where

V (x | y) =
1

2γ2
xTΓ−1x+

1

2σ2
‖y −Ax‖2.
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If Γ is symmetri
 and positive de�nite, so is Γ−1. Hen
e, we 
anintrodu
e a Cholesky fa
torization:

Γ−1 = RTR.With this notation,
xTΓ−1x = xTRTRx = ‖Rx‖2,and we de�ne

T (x) = 2σ2V (x | y) = ‖y −Ax‖2 + δ‖Rx‖2, δ :=
σ2

γ2
.The fun
tional T is sometimes referred to as the Tikhonov fun
tional.
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Re
all that the maximum a posteriori (MAP) estimator maximizes theposterior probability density of the unknowns:

xMAP = arg max
x∈Rn

π(x | y).In our setting,
xMAP = arg minV (x | y) be
ause V (x | y) = − log π(x | y).With the help of the Tikhonov fun
tional, this reads

xMAP = arg min T (x) = arg min
(
‖y −Ax‖2 + δ‖Rx‖2

)
.Re
all that the Tikhonov regularized solution of y = Ax � with thepenalty term ‖Rx‖ � is the minimizer of T (x). In 
onsequen
e, theTikhonov regularized solution and xMAP 
oin
ide if the regularizationparameter is 
hosen to be δ = σ2/γ2.325



Computational methods in inverse problemsJenni Heino, Nuutti Hyvönen,Matti Leinonen, Stratos Staboulisnuutti.hyvonen�tkk.fi, matti.leinonen�tkk.fi,stratos.staboulis�tkk.fiFourteenth le
ture, Mar
h 4, 2011.
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Example: Lapla
e transform (revisited)Re
all the problem of �nding a fun
tion f from noisy samples of itsLapla
e transform. This problem was dis
ussed at the ninth le
ture andsolved using various 
lassi
al regularization te
hniques.We take another look at the problem, and interpret its Tikhonovregularized solution from the statisti
al viewpoint.
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Lapla
e transformLet f : [0,∞)→ R be some unknown fun
tion and assume that we havea

ess to noisy samples of its Lapla
e transform

Lf(s) =

∫ ∞

0

e−stf(t) dt, s ≥ 0,at some measurement points sj , j = 1, . . . ,m. The task is toapproximate f using the noisy values {Lf(sj)}mj=1 as data.Observe that for large t the kernel e−st is typi
ally very small, and hen
ethe `tail' of f does not a�e
t the Lapla
e transform as mu
h as itsvalues 
lose to the origin. In 
onsequen
e, re
onstru
ting f is anill-posed inverse problem.
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Dis
retizationIn order to 
ome up with a 
omputational model, we approximate theintegral of the Lapla
e transform as

Lf(sj) ≈
∫ T

0

e−sjtf(t) dt ≈
n∑

k=1

wke
−sjtkf(tk), j = 1, . . . ,m,where t1, . . . , tn ∈ [0, T ] are the nodes and w = (w1, . . . , wn)T ∈ R

n the
orresponding weights of the 
hosen quadrature rule. Noti
e that it isimpli
itly assumed that e−stf(t) is `small' for all t that are larger thanthe threshold T > 0.For example, if we de
ided to use the trapezoid rule on an equidistantmesh in the interval [0, T ], we would 
hoose h = T/(n− 1) and

w = (h/2, h, h, . . . , h, h, h/2)T and tk = (k − 1)hfor k = 1, . . . , n. 329



The above quadrature rule 
an be written in the matrix form

y = Ax,where x ∈ R
n and y ∈ R

m are given by
x = (f(t1), . . . , f(tn))T

y = (Lf(s1), . . . ,Lf(sm))T,and the elements of the matrix A ∈ R
m×n are de�ned as

(A)jk = wke
−sjtk , j = 1, . . . ,m, k = 1, . . . , n.
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In the following numeri
al examples, we 
hoose m = 91 sampling pointson a logarithmi
 grid:
log sj = − log 10 + 2

(j − 1)

m− 1
log 10, j = 1, . . . ,m,where log denotes the natural logarithm. Now, the points {log sj}mj=1form a uniform grid in the interval [− log(10), log(10)], and thus

{sj}mj=1 lie in the interval [0.1, 10], with half of the points between 0.1and 1. This re�e
ts our knowledge that the information in the Lapla
etransform is � very loosely speaking � 
on
entrated 
lose to the origin.We set n = 101 and 
hoose the nodes {tk}nk=1 and the weights w ∈ R
na

ording to the Gauss�Legendre quadrature rule in the interval [0, 5].(One 
ould use something less sophisti
ated, su
h as trapezoid rule inthis same interval, as well.)
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Simulation of dataWe 
hoose
f(t) =







t3 − 4t2 + 4t, 0 ≤ t < 2,

0, t ≥ 2.In this simple 
ase, the Lapla
e transform 
an be 
al
ulated expli
itlywith the help of partial integration:
Lf(s) =

4

s2
− 4

s3
(2 + e−2s) +

6

s4
(1− e−2s), s > 0.Consequently, we just 
ompute the value of Lf(s) at the 
hosensampling points {sj}mj=1 using this formula, add realizations of anormally distributed random variable with zero mean and standarddeviation 10−3 to ea
h sample, plug the resulting data into the ve
tor y,and we are ready to go.
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Target fun
tion and the nodes
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Lapla
e transform and the noisy measurements
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Tikhonov regularized solutionWe 
onsider the above introdu
ed dis
retized �inverse Lapla
e transformproblem�
Ax = y.Re
all that the Tikhonov regularized solution xδ ∈ R

n is the uniqueminimizer of the Tikhonov fun
tional
‖Ax− y‖2 + δ‖x‖2, δ > 0.It is given expli
itly by the formula
xδ = (ATA+ δI)−1ATy.A

ording to the Morozov dis
repan
y prin
iple a feasible 
hoi
e for theregularization parameter is su
h δ = δMor that the 
orrespondingsolution satis�es

‖y −AxδMor
‖ ≈ ǫ = 10−3 · √m ≈ 9.5 · 10−3.335



Statisti
al modelLet us introdu
e the sto
hasti
 extension

Y = AX +E,where X ∈ R
n, Y ∈ R

m and E ∈ R
m are random variables. We assumethat X and E are independent and Gaussian,

X ∼ N (0, γ2I), E ∼ N (0, σ2I).Re
all from the previous le
ture that with these assumptions themaximum a posteriori estimate
xMAP = arg maxπ(x | y)is given as

xMAP = arg min
(
‖y −Ax‖2 + δ‖x‖2

)
, δ =

σ2

γ2
.
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Suppose that we know the noise level, i.e., σ = 10−3.Then, we still need to 
hoose the standard deviation (or the varian
e) ofthe prior density based on our a priori information on the unknownfun
tion f . If we believe that the order of magnitude of the values of fis, say, one, a suitable 
hoi
e for γ 
ould be, e.g., γ = 1 or γ = 0.5.(Note that our prior mean is set to zero.)With γ = 0.5 we get δ = σ2

γ2 = 4 · 10−6.How does the 
orresponding Tikhonov regularized solution look like?
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Tikhonov regularized solution with δ = 4 · 10−6
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Traditional Tikhonov with δ = δMor ≈ 3.6 · 10−5 (solid),

δ = 103 · δMor (slashed) and δ = 10−3 · δMor (dotted)
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The previous test 
ases presented at the ninth le
ture 
orrespond to thefollowing 
hoi
es of the prior standard deviation:

δ = δMor =⇒ γ = 0.167,

δ = 103 · δMor =⇒ γ = 0.00527,

δ = 10−3 · δMor =⇒ γ = 5.27.
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n-variate Gaussian densities
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De�nition. Let
Γ =




Γ11 Γ12

Γ21 Γ22



 ∈ R
n×n

be a positive de�nite and symmetri
 matrix, with Γ11 ∈ R
k×k, k < n,

Γ22 ∈ R
(n−k)×(n−k), and Γ21 = ΓT

12 ∈ R
(n−k)×k. We de�ne the S
hur
omplement Γ̃jj of Γjj , j = 1, 2, by the formulas

Γ̃22 = Γ11 − Γ12Γ
−1
22 Γ21, Γ̃11 = Γ22 − Γ21Γ

−1
11 Γ12

Observe that the de�nition of Γ implies that Γjj , j = 1, 2, aresymmetri
, positive de�nite and, in parti
ular, invertible. In
onsequen
e, the S
hur 
omplements are well de�ned and symmetri
.
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Lemma. Let Γ be a matrix that satis�es the assumptions of theprevious de�nition. Then, the S
hur 
omplements Γ̃jj , j = 1, 2, areinvertible matri
es and, furthermore,
Γ−1 =




Γ̃−1

22 −Γ̃−1
22 Γ12Γ

−1
22

−Γ̃−1
11 Γ21Γ

−1
11 Γ̃−1

11



 .
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Proof: We prove �rst that the S
hur 
omplements are invertible:Consider the determinant of Γ,
|Γ| =

∣
∣
∣
∣
∣
∣

Γ11 Γ12

Γ21 Γ22

∣
∣
∣
∣
∣
∣

6= 0.

By subtra
ting the �rst row multiplied by Γ21Γ
−1
11 from the se
ond one,we �nd that

|Γ| =

∣
∣
∣
∣
∣
∣

Γ11 Γ12

0 Γ22 − Γ21Γ
−1
11 Γ12

∣
∣
∣
∣
∣
∣

= |Γ11||Γ̃11|,

implying that |Γ̃11| 6= 0. In the same way, we 
an also show that

|Γ̃22| 6= 0.
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The proof of the se
ond assertion of the lemma follows from theGaussian elimination: Consider the linear system




Γ11 Γ12

Γ21 Γ22








x1

x2



 =




y1

y2



 .

By solving for x2 in the se
ond equation, we get

x2 = Γ−1
22 (y2 − Γ21x1).Substituting this formula into the �rst equation, then gives us

(Γ11 − Γ12Γ
−1
22 Γ21)x1 = y1 − Γ12Γ

−1
22 y2,or equivalently

x1 = Γ̃−1
22 y1 − Γ̃−1

22 Γ12Γ
−1
22 y2,whi
h veri�es the �rst row of 
laimed representation of Γ−1. The se
ondrow of the representation follows by reversing the roles of x1 and x2.345



Remark: Sin
e Γ is a symmetri
 matrix, so is Γ−1. In 
onsequen
e, wehave the identity
Γ̃−1

11 Γ21Γ
−1
11 = (Γ̃−1

22 Γ12Γ
−1
22 )T = Γ−1

22 Γ21Γ̃
−1
22 .
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Theorem. Let X ∈ R
n and Y ∈ R

m be two Gaussian random variableswhose joint probability density π : R
n × R

m → R+ is of the form

π(x, y) ∝ exp




−1

2




x− x0

y − y0





T 


Γ11 Γ12

Γ21 Γ22





−1 


x− x0

y − y0








 .

Then, the probability density of X 
onditioned on Y = y, i.e.,

π(x | y) : R
n → R+, is of the form

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ̃−1

22 (x− x̄)
)

,where

x̄ = x0 + Γ12Γ
−1
22 (y − y0).
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Proof: For simpli
ity, let us assume that x0 = 0 and y0 = 0.Due the representation of the joint 
ovarian
e matrix Γ−1 provided bythe previous Lemma and the remark that followed, we may write

π(x, y) ∝ exp

(

−1

2

(
xTΓ̃−1

22 x− 2xTΓ̃−1
22 Γ12Γ

−1
22 y + yTΓ̃−1

11 y
)
)

= exp

(

−1

2

(
(x− Γ12Γ

−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y) + c

)
)

,where c = yT(Γ̃−1
11 − Γ−1

22 Γ21Γ̃
−1
22 Γ12Γ

−1
22 )y. Hen
e, it follows that

π(x | y) ∝ π(x, y) ∝ exp

(

−1

2
(x− Γ12Γ

−1
22 y)

TΓ̃−1
22 (x− Γ12Γ

−1
22 y)

)

,where the proportionality 
onstants depend on y but not on x. Thisproves the 
laim. �
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Theorem. Let X and Y be Gaussian random variables with a jointprobability density as in the previous theorem. Then, the marginaldensity of X is
π(x) =

∫

Rm

π(x, y)dy ∝ exp

(

−1

2
(x− x0)

TΓ−1
11 (x− x0)

)

.

Proof: The proof is slightly more 
ompli
ated than the previous one. It
an be found in the textbook by Kaipio and Somersalo.
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Linear inverse problemAssume that we have a linear model with additive noise,

Y = AX +E,where A ∈ R
m×n is a known matrix, and X ∈ R

n and Y,E ∈ R
m arerandom variables. Assume furthermore that X and E are mutuallyindependent Gaussian variables with probability densities

πpr(x) ∝ exp

(

−1

2
(x− x0)

TΓ−1
pr (x− x0)

)

,and

πnoise(x) ∝ exp

(

−1

2
(e− e0)TΓ−1

noise(e− e0)
)

.
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With this information, we get from the Bayes formula that the posteriordistribution of X 
onditioned on Y = y is

π(x | y) ∝ πpr(x)π(y |x) = πpr(x)πnoise(y −Ax)

∝ exp

(

−1

2
(x− x0)

TΓ−1
pr (x− x0)−

1

2
(y −Ax− e0)TΓ−1

noise(y −Ax− e0)
)

The expli
it form of this posterior distribution, i.e., the form that showsthe posterior mean and 
ovarian
e expli
itly, 
an be 
al
ulated in astraightforward but tedious manner by `
ompleting the squares' withrespe
t to x. However, we may also use the �rst of the two theoremspresented on the previous few slides.
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Sin
e X and E are Gaussian, so is Y , and we have

E










X

Y










=




x0

y0



 , y0 = Ax0 + e0

Furthermore, using the fa
t that X and E are independent, we dedu
ethat

E
{
(X − x0)(X − x0)

T
}

= Γpr,

E
{
(Y − y0)(Y − y0)T

}
= E

{(
A(X − x0) + (E − e0)

)(
A(X − x0) + (E − e0)

)T
}

= AΓprA
T + Γnoise,

E
{
(X − x0)(Y − y0)T

}
= E

{

(X − x0)
(
A(X − x0) + (E − e0)

)T
}

= ΓprA
T.
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Hen
e, we get
cov




X

Y



 = E










X − x0

Y − y0








X − x0

Y − y0





T






=




Γpr ΓprA

T

AΓpr AΓprA
T + Γnoise



 .

The joint probability density of X and Y is thus of the form

π(x, y) ∝ exp




−1

2




x− x0

y − y0





T 


Γpr ΓprA

T

AΓpr AΓprA
T + Γnoise





−1 


x− x0

y − y0








 .

Using the �rst of the above two theorems, we 
an thus write theposterior density of X 
onditioned on Y = y.
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Theorem. Assume that X ∈ R
n and E ∈ R

m are mutually independentGaussian random variables,

X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise)and Γpr ∈ R
n×n and Γnoise ∈ R

m×m are positive de�nite. Assumefurther that we have a linear model Y = AX +E for a noisymeasurement Y , where A ∈ R
m×n is a known matrix. Then, theposterior probability density of X given the measurement Y = y is

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ−1

post(x− x̄)
)

,where

x̄ = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y −Ax0 − e0),and

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.354



Remark: It holds that
Γpr − Γpost = ΓprA

T(AΓprA
T + Γnoise)

−1AΓpr,whi
h is a positive semi-de�nite matrix. Loosely speaking, this meansthat the prior density is wider than the posterior, i.e., the measurementde
reases the un
ertainty in the whereabouts of X .Remark: As already mentioned, the expli
it forms of the mean and the
ovarian
e of the Gaussian posterior density for this linear model 
analso be derived dire
tly. This way we get alternative representations forthe posterior 
ovarian
e matrix
Γpost = (Γ−1

pr + ATΓ−1
noiseA)−1and the posterior mean

x̄ = (Γ−1
pr +ATΓ−1

noiseA)−1(ATΓ−1
noise(y − e0) + Γ−1

pr x0).355



Gaussian white noise prior and Tikhonov regularizationConsider the simple Gaussian white noise prior 
ase, X ∼ N (0, γ2I),and assume also that the noise is white noise, i.e., E ∼ (0, σ2I). In thisparti
ular 
ase the mean of the posterior distribution given by the abovetheorem turns into
x̄ = γ2AT(γ2AAT + σ2)−1y = AT(AAT + δI)−1y,where δ = σ2/γ2.It 
an be shown (the seventh exer
ise session) that this form isequivalent to the Tikhonov regularized solution

xδ = (ATA+ δI)−1ATy,whi
h is not very surprising, as we have already dedu
ed at the previousle
ture that xMAP = xδ for δ = σ2/γ2 and, on the other hand,
xCM = xMAP for a Gaussian posterior distribution.356
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ture, Mar
h 16, 2011.
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Improper Gaussian priors
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Motivation: Smoothness priorsRe
all from the thirteenth le
ture that �nding the maximum a posterior(MAP) � or 
onditional mean (CM) � estimate for the linear inverseproblem
Y = AX +E, Y,E ∈ R

m, X ∈ R
n,where X and E are independent and Gaussian with zero mean,

X ∼ N (0,Γ), E ∼ N (0, σ2I),is equivalent to minimizing the Tikhonov fun
tional
T (x) = ‖y −Ax‖2 + σ2‖Rx‖2,where R satis�es Γ−1 = RTR. (The matrix R 
an be, e.g., the Choleskyfa
tor of the positive de�nite and symmetri
 matrix Γ−1.)
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Let us then try to work our way in the opposite dire
tion: Consider the
orresponding 
lassi
al linear inverse problem

Ax = y,and let us solve it using Tikhonov regularization under the priorknowledge that x ∈ R
n represents point values of a smooth fun
tion.We try to in
orporate this extra information in the solution pro
ess byusing a `smoothness penalty term' for the Tikhonov fun
tional:

T (x) = ‖y − Ax‖2 + δ‖Lx‖2,where L ∈ R
k×n is a dis
rete approximation of some suitable di�erentialoperator.
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If you now 
ompare the two Tikhonov fun
tionals on the previous twoslides, it seems natural that the Gaussian sto
hasti
 extension
orresponding to the smoothness penalty approa
h would be

Y = AX +E,with

X ∼ N (0, (LTL)−1), E ∼ N (0, σ2I),where σ2 = δ.Unfortunately, there is a slight �aw in this logi
: In order for the inverse

(LTL)−1 to exist � and to be positive de�nite � the matrix L ∈ R
k×nneeds to be inje
tive, whi
h is not always the 
ase. (As an example,quite often Lx = 0 if all elements of x are the same.)
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Due to this observation, we will next 
onsider improper densities of theform:
πpr(x) ∝ exp

(

−1

2
‖L(x− x0)‖2

)

= exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,where L ∈ R
k×n is a given, possible non-inje
tive matrix.We will ta
kle the problem of interpreting su
h densities as Gaussianpriors in three di�erent ways:1. by introdu
ing a proper density that is `
lose' to the 
onsideredimproper density,2. by noting that the posterior density may be proper even if the prioris improper, and3. by using 
onditioning to update improper priors so that they be
omeproper. 362



Approximate proper densitiesRe
all from the �rst part of the 
ourse that any L ∈ R
k×n has a singularvalue de
omposition L = UΛV T, where U ∈ R

k×k and V ∈ R
n×n areorthogonal, and the diagonal matrix Λ ∈ R

k×n 
ontains thenon-negative singular values
λ1 ≥ λ2 ≥ . . . ≥ λp > λp+1 = . . . = λl = 0, l := min(k, n).Moreover, re
all that the 
olumns {v1, . . . , vn} of V satisfy

Ker(L) = span{vp+1, . . . , vn},and let us de�ne Q = [vp+1, . . . , vn] ∈ R
n×(n−p). In parti
ular, it is easyto see that QQT ∈ R

n×n is the orthogonal proje
tion onto Ker(L).
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We then de�ne an auxiliary 
ovarian
e matrix Γa ∈ R
n×n via

Γa = L†(L†)T + a2QQT,where L† ∈ R
n×k is the pseudoinverse of L and a > 0 is an arbitrary(large) s
alar.Lemma. The 
ovarian
e matrix Γa de�ned above is positive de�nite.Moreover, its inverse 
an be written expli
itly as

Γ−1
a = LTL+

1

a2
QQT.

Let x ∈ R
n be arbitrary and write it in the orthonormal basis

{v1, . . . , vn}, i.e.,

x =

n∑

j=1

αjvj , αj ∈ R,
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Then,
Γax =

p
∑

j=1

αj

λ2
j

vj + a2
n∑

j=p+1

αjvj ,and thus
xTΓax =

p
∑

j=1

α2
j

λ2
j

+ a2
n∑

j=p+1

α2
j > 0if x 6= 0, i.e., Γa is positive de�nite.Moreover,

(LTL+
1

a2
QQT)Γax =

p
∑

j=1

αjvj +
n∑

j=p+1

αjvj = x,

whi
h proves that Γ−1
a = (LTL+ 1

a2QQ
T), as x was 
hosen arbitrarily.
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Instead of 
hoosing the improper prior

πpr(x) ∝ exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,one may 
onsider resorting to the slightly modi�ed version

π̃pr(x) ∝ exp

(

−1

2
(x− x0)

TΓ−1
a (x− x0)

)

,whi
h de�nes a proper Gaussian density be
ause Γa is positive de�nitefor any a > 0.
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Let us next 
onsider in whi
h way these two densities are di�erent; forsimpli
ity assume that x0 = 0.Let P : R
n → Ker(L)⊥ be an orthogonal proje
tion, whi
h means, inparti
ular, that I − P is the orthogonal proje
tion onto Ker(L), i.e.,

I − P = QQT. Trivial 
al
ulations show that

πpr(x) = πpr(Px), x ∈ R,and

π̃pr(x) ∝ πpr(Px) exp

(

− 1

2a2
‖(I − P)x‖2

)

.In 
onsequen
e, πpr(x) is 
onstant as a fun
tion of the 
omponent

(I − P)x of x, whi
h makes it an improper prior. Moreover, thefun
tional dependen
e of πpr(x) and π̃pr(x) on Px is the same, but

π̃pr(x) has also a `density-like' dependen
e on (I −P)x. To sum up, thelarger a > 0 is, the `
loser' these two densities are to ea
h other.367



Proper posteriors 
orresponding to improper priorsRe
all the following theorem from the fourteenth le
ture:Theorem. Assume that X ∈ R
n and E ∈ R

m are mutually independentGaussian random variables, X ∼ N (x0,Γpr), E ∼ N (e0,Γnoise), andthat Γpr ∈ R
n×n and Γnoise ∈ R

m×m are positive de�nite. Assumefurther that we have a linear model Y = AX +E for a noisymeasurement Y , where A ∈ R
m×n is a known matrix. Then, theposterior probability density of X given the measurement Y = y is

π(x | y) ∝ exp

(

−1

2
(x− x̄)TΓ−1

post(x− x̄)
)

,where

x̄ = x0 + ΓprA
T(AΓprA

T + Γnoise)
−1(y −Ax0 − e0),and

Γpost = Γpr − ΓprA
T(AΓprA

T + Γnoise)
−1AΓpr.368



When dealing with improper prior densities of the form

πpr(x) ∝ exp

(

−1

2
(x− x0)

TLTL(x− x0)

)

,this theorem is unfortunately useless in the 
onstru
tion of the posterior,be
ause the natural 
andidate for the prior 
ovarian
e, i.e., (LTL)−1,does not typi
ally exist.However, re
all that we also introdu
ed alternative formulas for theposterior mean and 
ovarian
e, namely
Γpost = (Γ−1

pr +ATΓ−1
noiseA)−1,and

x̄ = (Γ−1
pr +ATΓ−1

noiseA)−1(ATΓ−1
noise(y − e0) + Γ−1

pr x0).These formulas look more promising as they involve only Γ−1
pr , not Γpr.369



For simpli
ity let us only 
onsider the zero mean 
ase:Theorem. Consider the linear observation model Y = AX +E,

A ∈ R
m×n, where X ∈ R

n and E ∈ R
m are mutually independentrandom variables, of whi
h E is proper Gaussian, E ∼ N (0,Γnoise). Let

L ∈ R
k×n be a matrix su
h that Ker(L) ∩Ker(A) = {0}. Then thefun
tion

x 7→ πpr(x)π(y |x) ∝ exp

(

−1

2

(
‖Lx‖2 + (y −Ax)TΓ−1

noise(y −Ax)
)
)

de�nes a Gaussian density over R
n, with the 
orresponding 
ovarian
eand mean given by the formulas

Γpost = (LTL+ATΓ−1
noiseA)−1, x̄ = ΓpostA

TΓ−1
noisey,respe
tively.
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Proof: Let us denote G = LTL+ATΓ−1
noiseA ∈ R

n×n and let x ∈ R
nbe arbitrary. Be
ause Γ−1

noise is positive de�nite, we have

xTGx = ‖Lx‖2 + (Ax)TΓ−1
noise(Ax) ≥ 0,where the equality holds only if x ∈ Ker(L) ∩Ker(A) = {0}. In
onsequen
e, G is positive de�nite, meaning that Γpost = G−1 iswell-de�ned and also positive de�nite.By 
ompleting the square with respe
t to x, the the quadrati
 fun
tionalin the exponent of the posterior density 
an be written as

‖Lx‖2 + (y −Ax)TΓ−1
noise(y −Ax) = xTGx− 2xTATΓ−1

noisey + yTΓ−1
noisey

= (x− x̄)TG(x− x̄) + c,where c ∈ R depends only on y, not on x, and
x̄ = G−1ATΓ−1

noisey = ΓpostA
TΓ−1

noisey. �371



If Ker(L) ∩Ker(A) 6= {0}, the `
andidate posterior density' is not aproper probability density. Indeed, it readily follows that

πpr(x)π(y |x) ∝ exp

(

−1

2

(
‖Lx‖2 + (y −Ax)TΓ−1

noise(y −Ax)
)
)

= exp

(

−1

2

(
‖LPx‖2 + (y − APx)TΓ−1

noise(y − APx)
)
)

,where P : R
n → (Ker(L) ∩Ker(A))

⊥ is an orthogonal proje
tion. Thismeans that πpr(x)π(y |x) is a 
onstant as a fun
tion of the 
omponentof x in the dire
tion of the non-trivial subspa
e Ker(L) ∩Ker(A), andthus its integral over the whole R
n does not attain a �nite value.
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Using 
onditioning to 
reate proper priorsSuppose that we would like to have a prior density of the form

πpr(x) ∝ exp

(

−1

2
xTLTLx

)

, x ∈ R
n,where L ∈ R

k×n is some given matrix. As we have already seen, if L isnot inje
tive, su
h a prior is improper. One te
hnique for obtaining aproper prior based on πpr(x) is �xing the values of some 
omponents of

x, and then 
onsidering πpr as a probability density of the remainingones.To this end, we partition x as x = [(x′)T, (x′′)T]T, where, possibly afterreordering the 
omponents, x′′ ∈ R
j , 0 ≤ j ≤ n, 
ontains the �xed
omponents and x′ ∈ R

n−j 
arries the unspe
i�ed ones.
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Let us partition the matrix LTL a

ordingly, i.e.,

LTL =: B =




B11 B12

B21 B22



 ,

where B11 ∈ R
(n−j)×(n−j) and B22 ∈ R

j×j are symmetri
, and

B12 ∈ R
(n−j)×j and B21 ∈ R

j×(n−j) satisfy B12 = BT
21. In whatfollows, we assume that B11 invertible. This 
an often be a
hieved by�xing su�
iently many 
omponents of x, i.e., by 
hoosing x′′ to beextensive enough.Let us derive the 
onditional density of X ′ given X ′′ = x′′ properly foron
e, i.e., in su
h a way that no 
onstant of proportionality depends onany of the variables at any stage:
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Taking into a

ount that this time we have partitioned our original
andidate for the inverse 
ovarian
e of X , it follows with some workfrom the se
ond theorem of the fourteenth le
ture that the (improper)marginal density of X ′′ is
π(x′′) ∝ exp

(

−1

2
(x′′)TB̃11x

′′
)

,where B̃11 = B22 −B21B
−1
11 B12 ∈ R

j×j is the S
hur 
omplement of

B11. Moreover, it is a straightforward 
onsequen
e of the partitioning of

B that

π(x′, x′′) ∝ exp

(

−1

2
((x′)TB11x

′ + 2(x′)TB12x
′′ + (x′′)TB22x

′′)

)

.
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Without paying too mu
h attention to the fa
t that some densities maybe improper, we then write

π(x′ |x′′) =
π(x′, x′′)

π(x′′)

∝ exp

(

−1

2
((x′)TB11x

′ + 2(x′)TB12x
′′ + (x′′)TB21B

−1
11 B12x

′′)

)

= exp

(

−1

2
(x′ +B−1

11 B12x
′′)TB11(x

′ +B−1
11 B12x

′′)

)

.NB: One 
ould have obtained this same formula for π(x |x′′) by justex
luding π(x′′) and all other multipliers that depend only on x′′. At theend, one 
ould have then argued that π(x′ |x′′) must be Gaussian, andthus the 
onstant of proportionality between π(x′ |x′′) and the last lineabove 
annot depend on x′′, but only on B11. Su
h argument showsalso that the 
onstants of proportionality in the theorems presented atthe fourteenth le
ture do not depend on any of the variables.376



To 
reate a prior density that is proper for all 
omponents of X we maynow pro
eed as follows. We �rst de�ne a proper Gaussian probabilitydistribution for the variable X ′′ ∈ R
j ,

X ′′ ∼ N (x′′0 ,Γ
′′),where Γ′′ ∈ R

j×j is symmetri
 and positive de�nite. The 
orrespondingdensity is denoted by π0.Then, we obtain a new 
andidate for the prior density of X by writing

π̃pr(x
′, x′′) = π(x′ |x′′)π0(x

′′)

∝ exp

(

−1

2
(x′ +B−1

11 B12x
′′)TB11(x

′ +B−1
11 B12x

′′)

)

× exp

(

−1

2
(x′′ − x′′0 )T(Γ′′)−1(x′′ − x′′0)

)

= exp

(

−1

2
(x− x0)

TΓ̃−1
prior(x− x0)

)

,377



where the mean x0 ∈ R
n and the 
ovarian
e Γ̃prior ∈ R

n×n 
an beobtained relatively easily by 
ompleting the squares:

x0 =




−B−1

11 B12x
′′
0

x′′0





and

Γ̃prior =




B11 B12

B21 B21B
−1
11 B12 + (Γ′′)−1





−1

.
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Exploring non-Gaussian densities
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Why sampling is needed?Remember that the CM estimate and the 
onditional 
ovarian
e requiresolving integration problems involving the posterior density:

xCM = E{x | y} =

∫

Rn

xπ(x | y)dx

cov(x | y) =

∫

Rn

(x− xCM)(x− xCM)Tπ(x | y)dx.In a non-Gaussian 
ase, these integrals 
annot typi
ally be expressed in a
losed form, and one must thus resort to numeri
al integration in R
n.

381



Suppose that our aim is to estimate some quantity of the form

I =

∫

f(x)π(x)dx.How about using quadrature rules? In prin
iple, we 
ould approximate

I =

∫

f(x)π(x)dx ≈
N∑

j=1

wjf(xj)π(xj),

with some suitable weights {wj} and nodal points {xj}. Unfortunately,if n is large, su
h 
omputation is not feasible: For a quadrature rule with

k dis
retization points per dimension, the total number of nodes is

N = kn. In addition, the realization of a quadrature rule would requirereliable information about the lo
ation of the probability density π.
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Often it is more advisable to resort to sampling: Draw a large enoughsample {xj}Nj=1 from the probability distribution 
orresponding to π(x),and use these points to approximate the integral as

I =

∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N∑

j=1

f(xj).A

ording to the Law of Large Numbers,
lim

N→∞

1

N

N∑

j=1

f(xj) =: lim
N→∞

IN = Ialmost surely, i.e., the sample average 
onverges almost surely to theexpe
ted value. Furthermore, the Central Limit Theorem states that

var(IN − I) ≈
var(f(X))

N
,i.e., the dis
repan
y between I and IN should go to zero like 1/

√
N .383



Markov Chain Monte Carlo
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Random walk in R
nRandom walk in R

n is a pro
ess of moving around by taking randomsteps. Elementary random walk:1. Choose a starting point x0 ∈ R
n and a 'step size' σ > 0. Set k = 0.2. Draw a random ve
tor wk+1 ∼ N (0, I) and set xk+1 = xk +σwk+1.3. Set k ← k + 1 and return to step 2, unless your stopping 
riterion issatis�ed.The lo
ation of the random walk at time k is a realization of the randomvariable Xk, and we have an evolution model

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, I).
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The 
onditional density of Xk+1, given Xk = xk, is

π(xk+1 |xk) =
1

(2πσ2)n/2
exp

(

− 1

2σ2
‖xk − xk+1‖2

)

= q(xk, xk+1).

The fun
tion q is 
alled the transition kernel. Sin
e q does not dependon k, i.e., the step is always distributed in the same way, the kernel is
alled time invariant.The pro
ess above de�nes a 
hain {Xk}∞k=0 of random variables. This
hain is a dis
rete time sto
hasti
 pro
ess. Note that

π(xk+1 |x0, x1, . . . , xk) = π(xk+1 |xk),i.e., the probability distribution of Xk+1 depends on the past onlythrough the pre
eding element Xk. A sto
hasti
 pro
ess with thisproperty is 
alled a Markov 
hain.
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Example: Random walk in R
2A random walk model in R

2:

Xk+1 = Xk + σWk+1, Wk+1 ∼ N (0, C), C ∈ R
2×2.Sin
e C is symmetri
 and positive de�nite, it has positive eigenvaluesand allows an eigenvalue de
omposition

C = UDUT.Hen
e, the inverse of C 
an be written as
C−1 = UD−1UT = (UD−1/2) (D−1/2UT)

︸ ︷︷ ︸

=L

,

whi
h means that the transition Kernel 
an in turn be given as
q(xk, xk+1) = π(xk+1 |xk) ∝ exp

(

− 1

2σ2
‖L(xk − xk+1)‖2

)

.
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Consequently, the random walk model be
omes

Xk+1 = Xk + σL−1W̃k+1, W̃k+1 ∼ N (0, I),where we have used the fa
t that L is the whitening matrix of Wk+1.To demonstrate the e�e
t of the 
ovarian
e matrix, let

U = [u(1), u(2)] =




cos θ − sin θ

sin θ cos θ



 , θ =
π

3
,

and

D = diag(s21, s
2
2), s1 = 1, s2 = 4.In the light of this random walk model, the random steps should onaverage have a 
omponent about four times larger in the dire
tion of these
ond eigenve
tor e2 than in the dire
tion of the �rst eigenve
tor e1.388
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On the left, three random walk realizations for C = I; on the right, threerealizations for C given above. In both 
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How about sampling from a given density p(x)?Assume now that X is a random variable with a probability density

π(x) = p(x).Consider an arbitrary transition kernel q(x, y) that we use to generate anew random variable Y given X = x, that is,

π(y |x) = q(x, y).The probability density of Y is found via marginalization,

π(y) =

∫

π(y |x)π(x)dx =

∫

q(x, y)p(x)dx.If the probability density of Y is equal to the probability density of X ,i.e., ∫

q(x, y)p(x)dx = p(y),we say that p is an invariant density of the transition kernel q.390



To summarize, if p is an invariant density of the transition kernel q andthe random variable X obeys the density p, then the random variable Yde�ned via the 
onditional density π(y |x) = q(x, y) is still distributeda

ording to the density p. Loosely speaking, the transition de�ned by qdoes not a�e
t the distribution of X .This property of invariant densities and 
orresponding transition kernels
an be put to use in sampling.
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Theorem. Let {Xk}∞k=0 be a time invariant Markov 
hain with thetransition kernel q, i.e.,
π(xk+1 |xk) = q(xk, xk+1).Assume that p is an invariant density of q, and that q satis�es someextra te
hni
al 
onditions (irredu
ibility and aperiodi
ity). Then, for all

x0 ∈ R and any Borel set B ∈ R
n, it holds that

lim
N→∞

P{XN ∈ B | X0 = x0} =

∫

B

p(x)dx.Moreover, for any regular enough fun
tion f ,
lim

N→∞

1

N

N∑

j=0

f(Xj) =

∫

Rn

f(x)p(x)dxalmost surely.Proof. Proof is omitted due to obvious reasons. �392



Let us try to put the above theorem into pra
ti
al use. Suppose that wewant to sample some probability density p and happen to know that it isinvariant with respe
t to some transition kernel q. Then, we 
an pro
eedas follows:1. Sele
t a starting point x0 and set k = 0.2. Draw xk+1 from q(xk, xk+1).3. Set k ← k + 1 and return to step 2, unless your personal stopping
riterion is satis�ed.A

ording to the previous theorem, the sample {xk}Nk=0 should give abetter and better representation of p as N in
reases.Hen
e, we are fa
ing an inverse problem: Given a probability density p,we would like to �nd a kernel q su
h that p is its invariant density.Very popular te
hnique for 
onstru
ting su
h a transition kernel is theMetropolis�Hastings algorithm. 393



Metropolis�Hastings algorithmLet us introdu
e a slightly more general Markov pro
ess: If you are
urrently at some x ∈ R
n, either1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or2. move away from x using a transition kernel R(x, y) otherwise.Sin
e R is a transition kernel, the mapping y 7→ R(x, y) de�nes aprobability density, and thus

∫

Rn

R(x, y)dy = 1, for all x ∈ R
n.Denote by A the event of moving away from x and by ¬A the event ofnot moving, meaning that

P{A} = 1− r(x), P{¬A} = r(x).394



What is the density of Y generated by the above strategy, given X = x?Let B ⊂ R
n be a Borel set and let us write

P{Y ∈ B | X = x} = P{Y ∈ B | X = x,A}P{A}
+ P{Y ∈ B | X = x,¬A}P{¬A}.The probability of arriving in B if we happen to move:

P{Y ∈ B | X = x,A} =

∫

B

R(x, y)dy.Arriving in B without moving happens only if x ∈ B, i.e.,

P{Y ∈ B | X = x,¬A} = χB(x) :=







1, if x ∈ B,
0, if x 6∈ B.
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To sum up, the probability of rea
hing B from x is

P{Y ∈ B | X = x} = (1− r(x))
∫

B

R(x, y)dy + r(x)χB(x).Finally, the probability of Y ∈ B is found through marginalization:

P{Y ∈ B} =

∫

P{Y ∈ B | X = x}p(x)dx

=

∫

p(x)

(∫

B

(1− r(x))R(x, y)dy

)

dx+

∫

χB(x)r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx

)

dy +

∫

B

r(x)p(x)dx

=

∫

B

(∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y)

)

dy.
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By de�nition
P{Y ∈ B} =

∫

B

π(y)dy,and 
omparing this with the above formula, we see that the probabilitydensity of Y must be
π(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y).Our ultimate goal is to �nd a kernel R and a probability r su
h that

π(y) = p(y), that is,
p(y) =

∫

p(x)(1− r(x))R(x, y)dx+ r(y)p(y),or, equivalently,

(1− r(y))p(y) =

∫

p(x)(1− r(x))R(x, y)dx.
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Denote
K(x, y) = (1− r(x))R(x, y),and observe that, sin
e R is a transition kernel,

∫

K(y, x)dx = (1− r(y))
∫

R(y, x)dx = 1− r(y).The 
ondition at the bottom of the previous slide 
an thus be written as

∫

p(y)K(y, x)dx =

∫

p(x)K(x, y)dx,whi
h is 
alled the balan
e equation. This 
ondition is satis�ed, inparti
ular, if the integrands are equal, i.e.,
p(y)K(y, x) = p(x)K(x, y).This 
ondition is known as the detailed balan
e equation. TheMetropolis�Hastings algorithm is simply a te
hnique for �nding a kernel

K that satis�es the detailed version of the balan
e equation.398



Start by sele
ting a 
andidate generating kernel q(x, y), then de�ne

α̃(x, y) = min

{

1,
p(y)q(y, x)

p(x)q(x, y)

}

,and �nally set
K(x, y) = α̃(x, y)q(x, y).A simple 
al
ulation shows that su
h K satis�es the detailed balan
eequation, i.e.,

p(y)α̃(y, x)q(y, x) = p(x)α̃(x, y)q(x, y).To 
onvin
e yourself, take note that for any x, y ∈ R
n either

α̃(x, y) =
p(y)q(y, x)

p(x)q(x, y)
and α̃(y, x) = 1,or

α̃(x, y) = 1 and α̃(y, x) =
p(x)q(x, y)

p(y)q(y, x)
.

399



The a
tual Metropolis�Hastings algorithm for drawing samples is asfollows:1. Given x, draw y using the transition kernel q(x, y).2. Cal
ulate the a

eptan
e ratio,
α(x, y) :=

p(y)q(y, x)

p(x)q(x, y)
.3. Flip the α-
oin: Draw t ∼ Uniform([0, 1]). If α > t, a

ept y.Otherwise stay put at x.
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Does the above algorithm really work? It is not quite obvious...Yes, it does. A

ording to our 
onstru
tion, the Markov pro
essintrodu
ed at the beginning of this se
tion, i.e., the one involving R and

r, is with the 
hoi
e
K(x, y) = (1− r(x))R(x, y) = α̃(x, y)q(x, y)su
h that p is its invariant density. Note, in parti
ular, that for this
hoi
e, it holds that

P{A and Y ∈ B |X = x} = (1− r(x))
∫

B

R(x, y)dy =

∫

B

K(x, y)dy,whi
h is something that the a
tual algorithm should also satisfy. In otherwords, everything is OK if for the above introdu
ed algorithm theprobability that �the move is a

epted and Y ∈ B� under X = x is givenby this same formula. (It does not matter what happens to Y if themove is not a

epted, be
ause then we do not move in any 
ase.)401



For the a
tual algorithm we have

P{A | Y = y, X = x} = min{1, α(x, y)} = α̃(x, y)and

P{Y ∈ B | X = x} =

∫

B

q(x, y)dy.Hen
e, it follows in the 
ase of the algorithm that
P{A and Y ∈ B |X = x} = α̃(x, y)

∫

B

q(x, y)dy =

∫

B

K(x, y)dy,whi
h means that everything really works as it should.
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ExampleConsider sampling in R
2 from the density

π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

.
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We use white noise random walk proposal

q(x, y) =
1

√

2πγ2
exp

(

− 1

2γ2
‖x− y‖2

)

.

Note that now the transition kernel is symmetri
, i.e.,

q(x, y) = q(y, x),and hen
e

α(x, y) =
π(y)

π(x)
.
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γ = 0.02
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γ = 0.7

406



γ = 4
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A

eptan
e rates:
γ = 0.02: 95.6 %
γ = 0.7: 24.5 %
γ = 4: 1.4 %
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Sample histories:

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Metropolis�Hastings algorithm (
ontinued)Re
all the Metropolis�Hastings algorithm for drawing samples from agiven probability density p : R
n → R+.1. Choose x0 ∈ R

n. Set k = 0.2. Given xk, draw y using the transition kernel q(xk, y) of your 
hoi
e.3. Cal
ulate the a

eptan
e ratio,
α(xk, y) :=

p(y)q(y, xk)

p(xk)q(xk, y)
.4. Flip the α-
oin: Draw t ∼ Uniform([0, 1]). If α > t, set xk+1 = y.Otherwise, stay put at xk, i.e., set xk+1 = xk.5. Set k ← k + 1 and return to Step 2, unless your stopping 
riterion issatis�ed.The 
onstru
ted sample {xk}Nk=0 should represent p if N is large enough.411



Adapting the Metropolis-Hastings samplerWith the white noise random walk proposal density (used in thenumeri
al example of the previous le
ture), the sampler does not takeinto a

ount the form of the posterior density.However, the shape of the density 
an be taken into a

ount whendesigning the proposal density, in order to minimize the number of`wasted proposals'. In high-dimensional setting, this be
omes espe
iallyuseful if the posterior density is highly anisotropi
, i.e., if the posterior isstret
hed in some dire
tions.The proposal distribution 
an be updated while the sampling algorithmmoves around the posterior density. This pro
ess is often 
alledadaptation.
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Gibbs samplerLet us �rst 
onsider some notational details:

• I = {1, 2, . . . , n} is the index set of R
n.

• I =
⋃m

j=1 Im is a partitioning of the index set into disjointnonempty subsets.
• The number of elements in Ij is denoted by kj ; k1 + · · ·+ km = n.

• We partition R
n as R

n = R
k1 × · · · × R

km , and 
orrespondingly

x = [xI1
; . . . ;xIm

] ∈ R
n, xIj

∈ R
kj ,where xi ∈ R is a 
omponent of the ve
tor xIj

if and only if i ∈ Ij .In pra
ti
e, it often holds that kj = 1 for all j = 1, . . . ,m, meaning that

m = n and xIj

is just the jth 
omponent of the original ve
tor x.
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Transition kernel for the Gibbs samplerSuppose that we are still aiming at sampling some given probabilitydensity p : R
n → R+, and re
all the Markov pro
ess 
onsidered at theprevious le
ture: If you are 
urrently at some x ∈ R

n, either1. stay put at x with the probability r(x), 0 ≤ r(x) ≤ 1, or2. move away from x using a transition kernel R(x, y) otherwise.Re
all also that we made the de�nition
K(x, y) = (1− r(x))R(x, y).For the Gibbs sampler, we 
hoose r(x) = 0 for all x ∈ R

n, i.e., moving isobligatory, and de�ne

K(x, y) = R(x, y) =
m∏

i=1

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
),
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where the 
onditional densities are de�ned in the natural way basedon p, i.e.,
p(yIi

| yI1
, . . . , yIi−1

, xIi+1
, . . . , xIm

) =
p(yI1

, . . . , yIi
, xIi+1

, . . . , xIm
)

∫

Rki
p(yI1

, . . . , yIi
, xIi+1

, . . . xIm
))dyIi

.

Su
h a transition kernel K does not, in general, satisfy the detailedbalan
e equation, i.e.,
p(y)K(y, x) 6= p(x)K(x, y),but it satis�es the (standard) balan
e equation,

∫

Rn

p(y)K(y, x)dx =

∫

Rn

p(x)K(x, y)dx,whi
h is a su�
ient 
ondition for p being an invariant density of theabove introdu
ed Markov pro
ess. (See the slides of the previous le
turefor the details.) 415



Proof: Consider �rst the left-hand side of the balan
e equation.Due to the basi
 properties of probability densities, we have

∫

Rki

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)dxIi

= 1for all i = 1, . . . ,m. By integrating the kernel K(y, x) over R
km , wethus get

∫

Rkm

K(y, x)dxIm
=

∫

Rkm

m∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)dxIm

=
m−1∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
)

∫

Rkm

p(xIm
|xI1

, . . . , xIm−1
)dxIm

=
m−1∏

i=1

p(xIi
|xI1

, . . . , xIi−1
, yIi+1

, . . . , yIm
).
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Indu
tively, by always integrating with respe
t to the last blo
k of x withrespe
t to whi
h we have not yet integrated, we easily obtain thataltogether
∫

Rn

K(y, x)dx = 1,whi
h in turn implies that
∫

Rn

p(y)K(y, x)dx = p(y)

∫

Rn

K(y, x)dx = p(y).
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Next, we 
onsider the right-hand side of the balan
e equation. Sin
e

K(x, y) is independent of xI1

and due to the de�nition of marginalprobability densities, we have

∫

Rk1

p(x)K(x, y)dxI1
= K(x, y)

∫

Rk1

p(x)dxI1
=: K(x, y)p(xI2

, . . . , xIm
).By substituting the de�nition of K in the above formula, we see that

∫

Rk1

p(x)K(x, y)dxI1
= K(x, y)p(xI2

, . . . , xIm
)

=

(
m∏

i=2

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
)

)

× p(yI1
|xI2

, . . . , xIm
)p(xI2

, . . . , xIm
)

=

(
m∏

i=2

p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
)

)

p(yI1
, xI2

, . . . , xIm
).
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Next, we integrate with respe
t to xI2

over R
k2 . By denoting

ai = p(yIi
| yI1

, . . . , yIi−1
, xIi+1

, . . . , xIm
), i = 2, . . . ,m,we may write

∫

Rk2

∫

Rk1

p(x)K(x, y)dxI1
dxI2

=

∫

Rk2

m∏

i=2

ai p(yI1
, xI2

, . . . , xIm
)dxI2

=

m∏

i=3

ai p(yI2
| yI1

, xI3
, . . . , xIm

)

∫

Rk2

p(yI1
, xI2

, . . . , xIm
)dxI2

=
m∏

i=3

ai p(yI2
| yI1

, xI3
, . . . , xIm

)p(yI1
, xI3

, . . . , xIm
)

=
m∏

i=3

ai p(yI1
, yI2

, xI3
, . . . , xIm

).
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We 
an 
ontinue indu
tively integrating over the remaining blo
ks

xI3
, . . . , xIm

in turns, whi
h eventually results in

∫

Rn

p(x)K(x, y)dx = p(yI1
, . . . , yIm

) = p(y),and the proof is 
omplete. �
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Gibbs sampler algorithm1. Choose the initial value x0 ∈ R
n and set k = 0.2. Draw the next sample as follows:(a) Set x = xk and j = 1.(b) Draw yIj

∈ R
kj from the kj-dimensional distribution

p(yIj
| yI1

, . . . , yIj−1
, xIj+1

, . . . , xIm
).(
) If j = m, set y = [yI1

; . . . ; ym] and terminate the inner loop.Otherwise, set j ← j + 1 and return to step (b).3. Set xk+1 = y, in
rease k ← k + 1 and return to step 2, unless the
hosen stopping 
riterion is satis�ed.
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Single 
omponent Gibbs sampler algorithm1. Choose the initial value x0 ∈ R
n and set k = 0.2. Draw the next sample as follows:(a) Set x = xk and j = 1.(b) Draw t ∈ R from the one-dimensional distribution

p(t | y1, . . . , yj−1, xj+1, . . . , xn) ∝ p(y1, . . . , yj−1, t, xj+1, . . . , xn)and set yj = t.(
) If j = n, set y = [y1, . . . , yn]T and terminate the inner loop.Otherwise, set j ← j + 1 and return to step (b).3. Set xk+1 = y, in
rease k ← k + 1 and return to step 2, unless the
hosen stopping 
riterion is satis�ed.
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ExampleConsider again the density
π(x) ∝ exp

(

−10(x2
1 − x2)

2 − (x2 −
1

4
)4
)

, x ∈ R
2.
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Sample histories for x1 and x2:

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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How to judge the quality of a sample?Essential questions:
• What sampling strategy and/or proposal distribution works the best?

• Is the sample big enough?Consider estimates of the form
∫

f(x)π(x)dx = E{f(X)} ≈ 1

N

N∑

j=1

f(xj),

and re
all that the Central Limit Theorem gives some answers regardingthe 
onvergen
e.
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Assume that the variables Yj = f(Xj) ∈ R are mutually independentand identi
ally distributed with E{Yj} = y and var(Yj) = σ2, and de�ne

ỸN =
1

N

N∑

j=1

Yj and ZN =

√
N(ỸN − y)

σ
.

Then, ỸN → E{Y } almost surely (LLN). Moreover, ZN isasymptoti
ally (standard) normally distributed, that is,

lim
N→∞

P{Zn ≤ z} =
1√
2π

∫ z

−∞
exp

(

−1

2
s2
)

ds.Loosely speaking, the above result says that the approximation errorbehaves as

1

N

N∑

j=1

f(xj)−
∫

f(x)π(x)dx ≈ σ√
Nprovided that the samples {xj} are independent.427



Let us have another look at the sample histories 
orresponding to ourstandard example. First, the Metropolis�Hastings algorithm for the three
hoi
es of γ (the verti
al 
omponent is plotted):

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
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Clearly, 
onse
utive elements are not independent.428



Then, the Gibbs sampler (both 
omponents are plotted):
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The results are somewhat better, but there is still some 
orrelationbetween 
onse
utive elements � espe
ially for the verti
al 
omponent.429



If every kth sample point is independent, one might expe
t thedis
repan
y to behave as 1/
√

N/k =
√

k/N instead of 1/
√
N .Consequently, one should try to 
hoose the proposal distribution so thatthe 
orrelation length is as small as possible.Qui
k visual assessment: Take a look at the sample histories ofindividual 
omponents. How should they look like?Consider a white noise signal, where the sample points are independentand the sample history looks like a "fuzzy worm". This is something one
ould aim at.
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Auto
ovarian
e and 
orrelation lengthDenote by fc(xj) ∈ R, j = 1, . . . , N , the 
entered sample points, i.e.,

fc(xj) = f(xj)−
1

N

N∑

i=1

f(xi), j = 1, . . . , N.

De�ne the normalized auto
ovarian
e of the sample as

γ2
k =

1

γ2
0(N − k)

N−k∑

j=1

fc(xj)fc(xj+k), k ≥ 1,

where γ2
0 = 1

N

∑N
j=1 fc(xj)

2 is the mean energy of the signal.The 
orrelation length of the sample {f(xj)
}N

j=1


an be estimated basedon the de
ay of the normalized auto
ovarian
e sequen
e of the sample.
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For a white noise sample, γ2
k ≈ 0 for any k > 0, where the estimate getsbetter as the sample, i.e., N , in
reases.We test this hypothesis by drawing two white noise samples (N = 5000and N = 100000) and plotting the fun
tion k 7→ γ2

k in both 
ases.
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Normalized auto
ovarian
e sequen
es for the MH example.
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Normalized auto
ovarian
es for the Gibbs example;horizontal 
omponent in blue and verti
al in red.
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Hypermodels
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In the statisti
al framework, the prior densities usually depend on someparameters su
h as varian
e or mean. Typi
ally � or at least thus far�, these parameters are assumed to be known.Some 
lassi
al regularization methods 
an be viewed as 
onstru
tion ofestimators based on the posterior density (e.g., Tikhonov regularization).The regularization parameter, whi
h 
orresponds to the parameter thatde�nes the prior distribution, is not assumed to be know, but sele
tedusing, e.g., the Morozov dis
repan
y prin
iple.What happens if it is not 
lear how to 
hoose these `prior parameters' inthe statisti
al framework?If a parameter is not know, it 
an be estimated as a part of the statisti
alinferen
e problem based on the data. This leads to hierar
hi
al modelsthat in
lude hypermodels for the parameters de�ning the prior density.
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Assume that the prior distribution depends on a parameter α whi
h isnot assumed to be known. Then we write the prior as a 
onditionaldensity, that is,
πpr(x |α).Assuming we have a hyperprior for α, i.e.,

πhyper(α),we 
an write the joint distribution of x and α as

π(x, α) = πpr(x |α)πhyper(α).Assuming a likelihood model π(y |x) for the measurement data y, weget the posterior density for x and α, given y, from the Bayes formula:

π(x, α | y) ∝ π(y |x)π(x, α) = π(y |x)π(x |α)πhyper(α).
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In general, the hyperprior density πhyper may depend on somehyperparameter α0. In su
h a 
ase, the main reason for the use of ahyperprior model is that the 
onstru
tion of the posterior is assumed tobe more robust with respe
t to �xing a value for the hyperparameter α0than �xing a value for α.Sometimes α0 
an also be treated as a random variable with a respe
tiveprobability density. Then, we would write
πhyper(α |α0),giving rise to nested hypermodels.
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Example: Hypermodel for a de
onvolution problem(Adapted from the textbook by Calvetti and Somersalo, Chapter 10)Consider a one-dimensional de
onvolution problem, the goal of whi
h isto estimate a signal f : [0, 1]→ R from noisy, blurred observationsmodelled as
yi = g(si) =

∫ 1

0

A(si, t)f(t)dt+ e(si), 1 ≤ i ≤ m,where {si}mi=1 ⊂ [0, 1] are the uniformly distributed measurement points,the blurring kernel is de�ned to be
A(s, t) = exp

(

− 1

2ω2
(t− s)2

)

,and the noise is Gaussian, or more pre
isely e ∼ N (0, σ2I).
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To begin with, we dis
retize the model as

y = Ax+ e,where A ∈ R
m×n is obtained by approximating the integral with asuitable quadrature rule, and the ve
tor x 
ontains the values of theunknown signal at the dis
retization points {tj}nj=0 that we have 
hosento be distributed uniformly over the interval [0, 1]. To be more pre
ise,

xj = f(tj), tj =
j

n
, 0 ≤ j ≤ n.For simpli
ity we assume it is known that f(0) = x0 = 0, and de�ne thea
tual unknown x to be

x =








x1...
xn







∈ R

n.
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Assume that as prior information we know that the signal is 
ontinuousex
ept for a possible jump dis
ontinuity at a known lo
ation.Let us start with a Gaussian �rst order smoothness prior,

πpr(x) ∝ exp

(

− 1

2γ2
‖Lx‖2

)

,where L is a �rst order �nite di�eren
e matrix (re
all that x0 = 0),

L =










1

−1 1. . . . . .
−1 1










∈ R
n×n.
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It is easy to see that L is invertible and

L−1 =










1

1 1... . . . . . .

1 . . . 1 1










is a lower triangular matrix. Sin
e 1
γL is the whitening matrix of

X ∈ R
n distributed a

ording to πpr(x) � see the twelfth le
ture �, itfollows that

X = L−1W, W ∼ N (0, γ2I).Due to the parti
ular shape of L−1, this relation 
an alternatively begiven as a Markov pro
ess:

Xj = Xj−1 +Wj , Wj ∼ N (0, γ2), j = 1, . . . , n, X0 = 0.443



Next, we aim at �ne-tuning the the above smoothness prior so that itallows a jump dis
ontinuity over the interval [tk−1, tk].To this end, we modify the above Markov model (only) at j = k bysetting
Xk = Xk−1 +Wk, Wk ∼ N

(

0,
γ2

δ2

)

,where δ < 1 is a parameter 
ontrolling the varian
e of Wk, i.e., theexpe
ted size of the jump.Let us walk the the above steps ba
kwards: It is easy to see that thisnew Markov pro
ess 
an alternatively be given as
X = L−1(D1/2)−1W, W ∼ N (0, γ2I),where

D1/2 = diag(1, 1, . . . , δ, . . . , 1, 1) ∈ R
n×nis de�ned so that (D1/2)−1 s
ales the kth 
omponent of W by 1/δ.444



In 
onsequen
e, after the above modi�
ation in the kth step of theMarkov pro
ess de�ning X , the random variable D1/2LX is distributeda

ording to N (0, γ2I), and thus we have introdu
ed the �ne-tuned`jump prior'
πpr(x) ∝ exp

(

− 1

2γ2
‖D1/2Lx‖2

)

.

Let us draw samples from this kind of a prior density. We set n = 150and γ = 0.1, meaning that we expe
t in
rements of the order 0.1 atmost of the subintervals. As an ex
eption, at two known lo
ations

t ≈ 0.4 and t ≈ 0.8 we use δ < 1 at the 
orresponding diagonal elementof D1/2, in anti
ipation of a jump of the order γ/δ = 0.1/δ.
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Random draws from the jump dis
ontinuity prior with two di�erent values of δ.
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As the additive noise was assumed to be Gaussian, the likelihood density
orresponding to the 
onsidered measurement is

π(y |x) ∝ exp

(

− 1

2σ2
‖y −Ax‖2

)

,and due to the Bayes formula, the posterior density 
an thus be writtenas

π(x | y) ∝ exp

(

− 1

2σ2
‖y −Ax‖2 − 1

2γ2
‖D1/2Lx‖2

)

.Using the results for Gaussian densities from previous le
tures, the meanof the posterior, whi
h is also the MAP and the CM estimate, 
an bewritten expli
itly as

xCM = xMAP =

(
σ2

γ2
LT(D1/2)TD1/2L+ ATA

)−1

ATy.
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The original signal f(t) and the measurement data (ω ≈ 0.05):
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Posterior estimates for f without the dis
ontinuity model (i.e., with themere �rst order smoothness prior) and with the dis
ontinuity model withknown lo
ations and jump sizes (γ = 0.1):
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Next we 
hoose γ = 0.01 that 
orresponds to in
rements of the order of

0.01 at ea
h subinterval, and s
ale δ a

ordingly so that it is ina

ordan
e with jump sizes of the order 1.
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Assume next that the lo
ations and expe
ted sizes of the jumps are notknown, but we expe
t a slowly varying signal that 
ould have a fewjumps at unknown lo
ations.We modify the Markov model to allow di�erent in
rements at di�erentpositions:
Xj = Xj−1 +Wj , Wj ∼ N

(

0,
1

θj

)

, θj > 0, j = 1, . . . , n.The 
orresponding prior model 
an be obtained in the same way asabove:

πpr(x) ∝ exp

(

−1

2
‖D1/2Lx‖2

)

,where this time around

D1/2 = diag(θ
1/2
1 , θ

1/2
2 , . . . , θ1/2

n ).If we knew the ve
tor θ = [θ1, . . . , θn]T, we 
ould pro
eed as previously.451



If θ ∈ R
n is not know, it 
an be 
onsidered as a random variable and itsestimation 
an be in
luded as a part of the inferen
e problem. To thisend, we need to write the 
onditional density

πpr(x | θ).In this 
ase, the normalizing 
onstant of the density πpr(x | θ) is nolonger a 
onstant, but depends on the random variable θ and thus
annot be ignored.Re
all the probability density of a n-variate Gaussian distribution:

π(z) =

(
1

(2π)n det(Γ)

)1/2

exp

(

−1

2
zTΓ−1z

)

,where the mean is assumed to be zero.
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In our 
ase, Γ = (LTDL)−1, where D = diag(θ) ∈ R
n×n. Re
all thatthe determinant of a triangular matrix is the produ
t of its diagonalelements, meaning that det(L) = det(LT) = 1. Moreover, thedeterminant of an inverse matrix is the inverse of the determinant of theoriginal matrix. Hen
e, it holds that

det(Γ)−1 = det(LTDL) = det(LT) det(D) det(L) =
n∏

j=1

θj ,and the properly normalized density be
omes
πpr(x | θ) =

(∏n
j=1 θj

(2π)n

)1/2

exp

(

−1

2
‖D1/2Lx‖2

)

=
1

(2π)n/2
exp



−1

2
‖D1/2Lx‖2 +

1

2

n∑

j=1

log θj

)



 .
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Next we need to 
hoose a hyperprior density for θ. Qualitatively, weshould allow some 
omponents of θ to deviate strongly from the`average'.We de
ide to use an ℓ1-type impulse prior with a positivity 
onstraint:

πhyper(θ) ∝ π+(θ) exp



−γ
2

n∑

j=1

θj





where π+(θ) is one if all 
omponents of θ are positive, and zerootherwise, and γ > 0 is a hyperparameter.
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The posterior distribution 
an then be written as

π(x, θ | y) ∝ π(y |x)π(x, θ) = π(y |x)π(x | θ)πhyper(θ)

∝ exp



− 1

2σ2
‖y −Ax‖2 − 1

2
‖D1/2Lx‖2 − γ

2

n∑

j=1

θj +
1

2

n∑

j=1

log θj





if all 
omponents of θ are positive, and π(x, θ | y) = 0 otherwise. It isstraightforward to see that the 
orresponding MAP estimate is theminimizer of the fun
tional
F (x, θ) =

∥
∥
∥
∥
∥
∥





1
σA

D1/2L



x−





1
σy

0





∥
∥
∥
∥
∥
∥

2

+ γ
n∑

j=1

θj −
n∑

j=1

log θj .

over (x, θ) ∈ R
n × R

n
+.
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We apply a two stage minimization algorithm:Choose some initial guesses for x and θ. Then, repeat the following twosteps until 
onvergen
e is a
hieved:1. Keep θ �xed and update x to be the least squares solution of





1
σA

D1/2L



x =





1
σy

0



 ,

where D = diag(θ).2. Fix x and update θ by minimizing F (x, ·) with respe
t to these
ond variable. An easy 
al
ulation shows that this minimizer 
anbe given 
omponentwise as
θj =

1

w2
j + γ

, j = 1, . . . , n,where w = Lx ∈ R
n is the ve
tor of in
rements 
orresponding to x.456



MAP estimates for x and θ provided by the above alternating algorithmwith γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n. The data is the same as depi
ted on page 448.
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Another example: The original signal f(t) and the measurement data.
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MAP estimates for x and θ provided by the above alternating algorithmwith γ = 10−5 and the initial guesses x0 = 0 and θ0,j = 1/γ,

j = 1, . . . , n.
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The End.
460


