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CHAPTER 1

Interpolation and discrete Fourier transform

The only available information about an examined function is often its val-
ues at some (sparse) set of grid points, which is not enough for many applica-
tions like differentiation. Under such circumstances one may resort to some
form of interpolation, e.g., with the help of polynomials.

1.1. Polynomial interpolation

Suppose that the values of a function

f : C→ C

are known at n + 1 ∈ N distinct points x0, x1, . . . , xn ∈ C, and the task is to find
a polynomial of order n,

(1.1) pn(x) =

n∑
k=0

akxk = a0 + a1x + · · · + an−1xn−1 + anxn, x ∈ C,

such that

(1.2) pn(x j) = f (x j), j = 0, 1, . . . ,n.

In other words, one is asked to find such coefficients a := [a0, a1, . . . , an]T
∈ Cn+1

that (1.2) is satisfied.

Lemma 1.1. The above interpolation problem has a unique solution, that is,
the equations (1.2) define a unique polynomial of the form (1.1).

PROOF. Let us define a linear mapping V : Cn+1
→ Cn+1 via

V :


a0
a1
...

an

 7→


pn(x0)
pn(x1)
...

pn(xn)

 ,
where pn is the polynomial defined by (1.1). It is easy to see that V can be
represented in a matrix form as

(1.3) Va =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1
...

...
...

...

1 xn x2
n . . . xn

n

 a.

In the following, we identify V with this so-called Vandermonde matrix, i.e.,
we interpret V ∈ C(n+1)×(n+1). With the help of V the interpolation task can be

1



2 1. INTERPOLATION AND DISCRETE FOURIER TRANSFORM

given in the following form: Find a ∈ Cn+1 so that

(1.4) Va = y,

where y := [ f (x0), f (x1), . . . , f (xn)]T
∈ Cn+1.

From the course Mat-1.1020 L2 we recall that (1.4) has a unique solution
if and only if V is invertible, which is equivalent to V being injective, that is,

Va = 0 ⇐⇒ a = 0.

Assume that Va = 0 for some a ∈ Cn+1. According to the definition of V this is
equivalent to

pn(x j) = 0, j = 0, 1, . . . ,n,
meaning that the nth degree polynomial pn has n + 1 distinct roots. It is well
known that the only polynomial pn with this property is the trivial polynomial
pn ≡ 0,1 proving that a0 = a1 = · · · = an = 0. In consequence, V is injective and
the proof is complete. �

The following theorem gives information about the error that is made if a
function is replaced by its polynomial interpolant. For simplicity, we assume
that f : R→ R.

Theorem 1.2. Assume that the points x0, x1, . . . , xn are in ascending order on
the interval [x0, xn] and f ∈ Cn+1, i.e., f is n + 1 times continuously differen-
tiable. Let pn be the (nth degree) polynomial interpolant of f with respect to the
aforementioned set of points. For any x ∈ [x0, xn], it holds that

(1.5) f (x) − pn(x) =
f (n+1)(ξ)
(n + 1)!

n∏
j=0

(x − x j)

with some ξ = ξ(x) ∈ [x0, xn].

PROOF. If x = x j for some j = 0, 1, . . . ,n, both sides of (1.4) vanish and the
claim holds trivially.

We may thus assume that x , x j for all j = 0, 1, . . . ,n. Let us define two
auxiliary functions:

w(s) =

n∏
j=0

(s − x j)

and
g(s) = f (s) − pn(s) −

f (x) − pn(x)
w(x)

w(s),

which is well defined since w(x) , 0. Clearly, g(x) = 0, as well as g(x j) = 0,
j = 0, 1, . . . ,n, since

pn(x j) = f (x j) and w(x j) = 0, j = 0, 1, . . . ,n.

Hence, g has n + 2 distinct roots on the interval [x0, xn].
According to the Rolle’s theorem (draw a picture or consult, e.g., Wikipedia),

between any two roots of g there lies (at least) one root of g′, resulting in at
least n + 1 roots of g′ on the interval [x0, xn]. Continuing analogously, it is easy
to deduce that g(n+1) has at least one root, say ξ, between x0 and xn. Because pn

is by definition a polynomial of degree n, p(n+1) is identically zero. On the other

1Fundamental theorem of algebra.
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hand, as w is a polynomial of degree n + 1, whose leading order coefficient is 1,
it is straightforward to convince oneself that w(n+1)(s) ≡ (n + 1)!. To sum up,

0 = g(n+1)(ξ) = f (n+1)(ξ) −
f (x) − pn(x)

w(x)
(n + 1)! ,

or equivalently,

f (x) − pn(x) =
f (n+1)(ξ)
(n + 1)!

w(x),

which completes the proof. �

In particular, Theorem 1.2 induces the estimate

| f (x) − pn(x)| ≤
C

(n + 1)!

n∏
j=0

|x − x j|, x ∈ [x0, xn],

where
C = max

ξ∈[x0,xn]

∣∣∣ f (n+1)(ξ)
∣∣∣.

In other words, if the (n + 1)th derivative of f does not attain very large values
on the interval [x0, xn] and the set of interpolation points is relatively dense,
the discrepancy between f and pn is not huge.

Remark 1.3. The interpolation polynomial pn of f : C→ C with respect to the
distinct points x0, x1, . . . , xn ∈ C can be written explicitly with the help of the
so-called Lagrange polynomials,

lm(x) =
∏
k,m

x − xk

xm − xk
, m = 0, 1, . . . ,n.

Indeed, lm is obviously an nth order polynomial and

lm(x j) = δm, j :=
{

1, j = m,
0, j , m, m, j = 0, 1, . . . ,n.

Consequently, it must hold that

pn(x) =

n∑
m=0

f (xm) lm(x)

since the polynomial interpolant is unique due to Theorem 1.2.
Be that as it may, the above introduced linear algebraic interpretation of

the polynomial interpolation problem enables a straightforward extension to
the case where the polynomial order is less than the number of mesh points
and the ‘interpolant’ is sought for in the sense of least squares.

1.2. Least squares polynomial fitting

We will next consider the practically relevant situation where (noisy) val-
ues of a function f : R → R are known at the points x0, x1, . . . , xn ∈ R and the
task is to find a polynomial of degree m ≤ n,

(1.6) pm(x) =

m∑
k=0

akxk = a0 + a1x + · · · + am−1xm−1 + amxm, x ∈ R,



4 1. INTERPOLATION AND DISCRETE FOURIER TRANSFORM

which approximates f in the sense of least squares. To be more precise, the aim
is to determine the coefficients a := [a0, a1, . . . , am]T

∈ Rm+1 so that the square
sum

n∑
j=0

(
f (x j) − pm(x j)

)2

is minimized. (Re)defining the linear map V : Rm+1
→ Rn+1 by

V :


a0
a1
...

am

 7→


pm(x0)
pm(x1)
...

pm(xn)


and noting that V may once again be identified with a Vandermonde matrix,

(1.7) V =


1 x0 x2

0 . . . xm
0

1 x1 x2
1 . . . xm

1
...

...
...

...

1 xn x2
n . . . xm

n

 ,
the least squares problem can be given in an equivalent form as

(1.8) arg min
a∈Rm+1

|y − Va|2,

where | · | denotes the Euclidean norm and y := [ f (x0), f (x1), . . . , f (xn)]T
∈ Rn+1.

Theorem 1.4. Assume that x0 < x1 < x2 < · · · < xn and m ≤ n. Then, the
least squares polynomial fitting problem (1.8) has a unique solution, which is
determined by the unique solution of the normal equation

(1.9) VTVa = VTy,

where V ∈ R(n+1)×(m+1) is the Vandermonde matrix defined in (1.7).

PROOF. To begin with, we prove that (1.9) has a unique solution, which is
equivalent to showing that the square matrix VTV ∈ R(m+1)×(m+1) injective. In
fact, we will do slightly better and show that VTV is positive definite:

aTVTVa = (Va)T(Va) = |Va|2 ≥ 0,

where the equality holds if and only if Va = 0 ∈ Rn+1. By looking at (1.7),
it is obvious that Va = 0 means the mth order polynomial pm defined by the
coefficients a ∈ Rm+1 has n + 1 distinct roots. Since n ≥ m, it must hold pm ≡ 0
and, in particular, a = 0 ∈ Rm+1. Hence,

aTVTVa > 0 for all Rm+1
3 a , 0,

which also demonstrates injectivity.
It remains to prove that the unique solution of (1.9) indeed uniquely solves

(1.8), i.e., is the minimizer of

g(a) := |y − Va|2 = yTy − 2aTVTy + aTVTV a, a ∈ Rm+1.

This could be established by means of linear algebra, but we take here a more
straightforward approach and compute the gradient of g (an exercise):

∇g(a) = −2VTy + 2VTVa.
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It follows that the only point where the gradient of g vanishes is the one sat-
isfying (1.9). As g is smooth and its minimum cannot obviously be attained
at ‘infinity’, the critical point defined by (1.9) must coincide with the unique
solution of (1.8). (Actually, one could easily show that the Hessian of g is the
constant, positive definite matrix 2VTV, and so the fact that the solution of
(1.8) is the unique minimizer of g follows from basic optimization theory.) �

1.3. Fourier series (a recap)

Let us recall some basic concepts related to Fourier series. The Fourier
coefficients of a square integrable function f are defined by the formula

(1.10) f̂ ( j) =
1

2π

∫ π

−π
f (t) e−i jtdt, j ∈ Z.

They may be interpreted as (scaled) scalar projections of f on the orthonormal
basis

1
√

2π
ei jt, j ∈ Z,

of the space of square integrable functions

L2([−π, π]) :=
{

g : [−π, π]→ C
∣∣∣∣∣ ∫ π

−π
| f (t)|2 < ∞

}
.

The Fourier series
∞∑

j=−∞

f̂ ( j) ei jt

converges towards f ∈ L2([−π, π]) in the sense that∥∥∥∥ f −
n∑

j=−n

f̂ ( j) ei j ·
∥∥∥∥

L2([−π,π])
=

( ∫ π

−π

∣∣∣ f (t) −
n∑

j=−n

f̂ ( j) ei jt
∣∣∣2dt

)1/2
−→ 0

as n goes to infinity. In addition, it is known that

f (t) = lim
n→∞

n∑
j=−n

f̂ ( j) ei jt =:
∞∑

j=−∞

f̂ ( j) ei jt

if f is differentiable at t.
The real form of the Fourier series is

∞∑
j=−∞

f̂ ( j) ei jt =
a0

2
+

∞∑
j=1

(
a j cos( jt) + b j sin( jt)

)
,

where

a j =
1
π

∫ π

−π
f (t) cos( jt) dt and b j =

1
π

∫ π

−π
f (t) sin( jt) dt.

It holds that a j = f̂ ( j) + f̂ (− j), j ≥ 0,

b j = i
(

f̂ ( j) − f̂ (− j)
)
, j ≥ 1,

and f̂ ( j) =


1
2 (a j − ib j), j > 0,
1
2 a0, j = 0,
1
2 (a j + ib j), j < 0.
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The so-called Fourier cosine and sine series are needed in many appli-
cations. To define these concepts, we consider a square integrable function
f̃ ∈ L2([0, π]) and introduce the coefficients

ã j =
2
π

∫ π

0
f̃ (t) cos( jt) dt and b j =

2
π

∫ π

0
f̃ (t) sin( jt) dt.

The Fourier cosine and sine series of f̃ are

ã0

2
+

∞∑
j=1

ã j cos( jt) and
∞∑
j=1

b̃ j sin( jt),

respectively. It can be shown that these converge towards f̃ in the norm of
L2([0, π]).

Theorem 1.5. The Fourier cosine and sine series of f̃ ∈ L2([0, π]) converge to f̃
in the topology of L2([0, π]), that is,∥∥∥∥ f̃ −

( ã0

2
+

n∑
j=1

ã j cos( j ·)
)∥∥∥∥

L2([0,π])
−→ 0,(1.11)

∥∥∥∥ f̃ −
n∑

j=1

b̃ j sin( j ·)
∥∥∥∥

L2([0,π])
−→ 0

as n goes to infinity.

PROOF. We start by considering (1.11) and continuing f̃ as an even func-
tion to the interval [−π, π],

f (t) =

{
f̃ (t), t ∈ [0, π],

f̃ (−t), t ∈ [−π, 0).

Clearly, f ∈ L2([−π, π]), and so

(1.12)
∥∥∥∥ f −

(a0

2
+

n∑
j=1

(
a j cos( j ·) + b j sin( j ·)

))∥∥∥∥
L2([−π,π])

−→ 0,

as n → ∞. Since f and cos( j ·) are both even functions, their product is also
even, and we have

a j =
1
π

∫ π

π
f (t) cos( jt) dt =

2
π

∫ π

0
f̃ (t) cos( jt) dt = ã j, j = 0, 1, 2, . . . .

On the other hand, as sin( j ·) is odd, its product with f is odd, leading to

b j =
1
π

∫ π

−π
f (t) sin( jt) dt = 0, j = 1, 2, . . . .

In consequence, it follows from (1.12) that∥∥∥∥ f −
( ã0

2
+

n∑
j=1

ã j cos( j ·)
)∥∥∥∥

L2([−π,π])
−→ 0

when n → ∞. By restricting the attention to the subinterval [0, π], we have
proved (1.11).
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The claim for the sine series can be proved in a similar manner by contin-
uing f̃ as an odd function, i.e., introducing

f (t) =

{
f̃ (t), t ∈ [0, π],

− f̃ (−t), t ∈ [−π, 0),

for which a j = 0, j = 0, 1, . . . , and b j = b̃ j, j = 1, 2, . . . . �

1.4. Discrete Fourier transform (DFT)

In many applications (e.g., signal or image processing), one wants to com-
pute the Fourier coefficients for some underlying function f . This can rarely
be achieved by directly evaluating the integrals (1.10). There are at least two
reasons:

(i) The explicit form of f is often unknown; the available information is
only a set of pointwise values f (t0), f (t1), . . . , f (tn−1).

(ii) Even if f is known explicitly, it is typically impossible to represent its
Fourier coefficients with the help of elementary functions.

As a consequence, it is essential to consider how Fourier coefficients can be
approximated numerically.

A finite number of Fourier coefficients can be estimated by means of nu-
merical integration, e.g., with the help of quadrature rules such as the trape-
zoidal rule. An alternative approach is to employ interpolation: Let us assume
that f : R→ C is 2π-periodic and differentiable, in which case it is known that

(1.13) f (t) =

∞∑
j=−∞

f̂ ( j) ei jt

for all t ∈ R. Moreover, suppose that the values of f are known on the equidis-
tant grid

(1.14) tk = k
2π
n
, k = 0, 1, . . . ,n − 1, n ∈N,

over one period of f .

Remark 1.6. The points (1.14) form a uniform mesh over the interval [0, 2π]
— excluding the right end point 2π, which would not provide any extra infor-
mation as f (0) = f (2π). This is a traditional choice for the discrete Fourier
transform (DFT).

The leading idea of DFT is to find n coefficients d j, j = 0, 1, . . . ,n − 1, such
that for k = 0, 1, . . . ,n − 1,

(1.15) f (tk) =

n−1∑
j=0

d j ei jtk =

n−1∑
j=0

d j x j
k = d0 + d1xk + d2x2

k + · · · + dn−1xn−1
k ,

where
xk := eitk = eik 2π

n = (ei 2π
n )k = wk

with the definition w := ei 2π
n . Obviously, (1.15) defines a polynomial interpola-

tion problem with respect to the points C 3 xk = wk, k = 0, 1, . . . ,n − 1. Since
tk, k = 0, 1, . . . ,n − 1, are distributed uniformly over [0, 2π], the points xk, k =
0, 1, . . . ,n−1, form an equidistant grid on the unit circle in the complex plane. In
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particular, xk, k = 0, 1, . . . ,n− 1, are distinct and it follows from Lemma 1.1 that
(1.15) uniquely determines the coefficients d := [d0, d1, . . . , dn−1]T

∈ Cn. More-
over, d can be solved from the equation

(1.16) F d = y,

where y := [ f (t0), f (t1), . . . , f (tn−1)]T
∈ Cn and F is a Vandermonde matrix,

F =



1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2
...

...
...

...

1 xn−1 x2
n−1 . . . xn−1

n−1


=



1 1 1 . . . 1
1 w1 w2 . . . wn−1

1 w2 w2·2 . . . w2(n−1)

...
...

...
...

1 wn−1 w2(n−1) . . . w(n−1)2


.

Elementwise, F is defined as

F jk = w( j−1)(k−1), j, k = 1, 2, . . . ,n.

The inverse of F can also be given explicitly.

Lemma 1.7. It holds that
F−1 =

1
n

F,

where · denotes elementwise complex conjugation.

PROOF. According to the definition of matrix multiplication,

(FF) jk =

n∑
l=1

F jlFlk =

n∑
l=1

w( j−1)(l−1)w(l−1)(k−1).

Because w = e−i 2π
n = w−1, we get

(FF) jk =

n∑
l=1

w(l−1)(( j−1)−(k−1)) =

n∑
l=1

(w( j−k))(l−1).

In particular,

(FF) j j =

n∑
l=1

1(l−1) =

n∑
l=1

1 = n, j = 1, 2, . . . ,n.

On the other hand, the formula for a finite geometric series gives for j , k,

(FF) jk =

n−1∑
l=0

(w( j−k))l =
1 − (w( j−k))n

1 − w( j−k)
=

1 − ei( j−k)2π

1 − ei ( j−k)
n 2π

=
1 − 1

1 − ei ( j−k)
n 2π

= 0,

where the denominator does not vanish as j − k cannot be a multiple of n.
Altogether, we have proved that

FF = nI ⇐⇒ F
(1
n

F
)

= I,

where I ∈ Cn×n is the identity matrix. This completes the proof. �
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Let us summarize our findings: If y := [ f (t0), f (t1), . . . , f (tn−1)]T
∈ Cn, then

the DFT coefficients d = [d0, d1, . . . , dn−1]T
∈ Cn can be computed via

d =
1
n

F y =
1
n



1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

...
...

...
...

1 xn−1 x2
n−1 . . . xn−1

n−1


y,

where x j = eit j = ei j 2π
n . Taking into account the complex conjugations, this can

be equivalently stated as

(1.17) d j =
1
n

n−1∑
k=0

f (tk) (e−it j )k =
1
n

n−1∑
k=0

f
(

2πk
n

)
e−i jk 2π

n , j = 0, 1 . . . ,n − 1.

The vector d ∈ Cn is called the discrete Fourier transform (DFT) of the ‘sig-
nal’ y ∈ Cn. Observe that the inverse discrete Fourier transform, i.e., the point
values of f (or the signal y) given d, can be computed using the original inter-
polation formula (1.15) or equivalently the matrix identity (1.16).

Although (1.15) resembles the Fourier series expansion (1.13) of a smooth
enough function, it is not yet quite obvious how the Fourier coefficients { f̂ j} j∈Z ⊂

C and the DFT d ∈ Cn are related. This imperfection is fixed by the following
theorem.

Theorem 1.8. If f is differentiable and 2π-periodic, then

(1.18) d j =

∞∑
l=−∞

f̂ ( j + ln), j = 0, 1, . . . ,n − 1,

where d ∈ Cn is the discrete Fourier transform of f .

PROOF. As it is known that the Fourier series of a differentiable function
converges pointwise, we have

f (tk) =

∞∑
m=−∞

f̂ (m) eimtk , k = 0, 1, . . . ,n − 1.

Substituting this representation of f (tk) in (1.17) results in

(1.19) d j =
1
n

n−1∑
k=0

( ∞∑
m=−∞

f̂ (m) eimtk
)

e−ikt j =
1
n

∞∑
m=−∞

f̂ (m)
n−1∑
k=0

eik(m− j) 2π
n ,

where the second step is a consequence of the definition of tk in (1.14).
Let us deduce the value of the inner sum in (1.19),

sm :=
n−1∑
k=0

eik(m− j) 2π
n ,
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by dividing the possible values of m ∈ Z into two subsets. Assume first that
m = j + ln for some l ∈ Z, which leads to

sm =

n−1∑
k=0

eikl2π =

n−1∑
k=0

1 = n.

Next, suppose that m , j + ln for all l ∈ Z, which means that there exists an
integer 0 < r < n such that m = j + ln + r for some l ∈ Z. In consequence,

sm =

n−1∑
k=0

eik(ln+r) 2π
n =

n−1∑
k=0

eikl2π eikr 2π
n =

n−1∑
k=0

(eir 2π
n )k =

1 − (eir 2π
n )n

1 − eir 2π
n

=
1 − eir2π

1 − eir 2π
n

= 0,

where we once again used the formula for a finite geometric series.
Hence, one only needs to account for those m ∈ Z that equal “ j modulo n”,

i.e., those m for which m − j is divisible by n, in the exterior sum of (1.19):

d j =
1
n

∞∑
m=−∞

f̂ (m) sm =
1
n

∞∑
l=−∞

n f̂ ( j + ln) =

∞∑
l=−∞

f̂ ( j + ln),

which completes the proof. �

Let us try to interpret the result of the above theorem: If the examined
function f is ‘nice’, its Fourier coefficients { f̂ j} j∈Z converge quickly to zero when
the absolute value of the frequency parameter j ∈ Z increases. If n ∈ N is not
very small, it is thus reasonable to assume that in the sum (1.18) the greatest
contribution comes from the Fourier coefficient with the smallest index in the
sense of absolute value.

Hence, the first ‘half ’ of the DFT coefficients satisfy

d j ≈ f̂ ( j), j = 0, 1, . . . ,
n
2
− 1,

where and in the following we assume for simplicity that n ∈ N is even, while
for the latter ones it holds that

d j ≈ f̂ ( j − n), j =
n
2

+ 1,
n
2

+ 2, . . . ,n − 1.

Finally, the DFT coefficient ‘in the middle’ contains equal amount of informa-
tion about two different Fourier coefficients:

d n
2
≈ f̂

(n
2

)
+ f̂

(
−

n
2

)
.

The other way around,

f̂ ( j) ≈ d j, j = 0, 1, . . . ,
n
2
− 1,

and
f̂ (− j) ≈ dn− j, j = 1, 2, . . . ,

n
2
− 1.

To sum up, the (low) positive Fourier frequencies are in their ‘correct places’ in
the DFT vector, whereas the (low) negative frequencies are in the tail end of d.

Remark 1.9. Usually, the Fourier coefficients f̂ ( j) with | j| � n
2 can be esti-

mated more accurately by the DFT than those for which | j| is only slightly
smaller than n

2 . As an example, according to (1.18), the second lowest Fourier
frequency (in absolute value) contributing to d1 is −n + 1, i.e. pretty high, while
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for d n
2−1 it is − n

2 − 1, which approximately as high as the ‘primary frequency’
n
2 − 1.

In practice, the DFT is almost always computed by means of the fast Fourier
transform (FFT). If the DFT coefficients are computed using the matrix iden-
tity d = 1

n Fy, the number of needed floating point operations behaves like O(n2)
as a function of n. The FFT algorithm takes advantage of the special structure
of F and computes the DFT in O(n log(n)) operations. If n is large, as it is often
in practical applications, the speed-up is considerable.

An implementation of the FFT algorithm can be found in practically all
computational software, such as MATLAB; the details of the algorithm are not
discussed on this course.





CHAPTER 2

Numerical solution of ordinary differential
equations

The solution of an initial value problem (IVP) for an ordinary differential
equation (ODE) cannot usually be written down explicitly, meaning that one
must often resort to numerical solution techniques in practice. It is anyway
good to know the conditions under which a unique solution exists.

2.1. Existence and uniqueness (counterexamples)

Let us consider the IVP

(2.1) x′(t) = f (t, x(t)), x(t0) = x0.

Here, t ∈ R may be interpreted as the time, x(t) ∈ Rn describes the state of the
examined system at the time t ∈ R, the initial value x0 gives the state of the
system at the (fixed) initial time t0 ∈ R, and the function f : R×Rn

→ Rn gives
the time derivative of the system as a function of the time and the state of the
system. (The domain of definition for f is not always the whole of R×Rn but it
depends on the specific application.)

It seems believable that knowing the initial value x0 and the ‘rate of change’
f constitutes enough information for uniquely determining the state of the sys-
tem, x(t), for any t ≥ t0 (or t ≤ t0). However, the situation is not quite this sim-
ple: both the existence and the uniqueness of a solution to (2.1) require some
regularity from f : R ×Rn

→ Rn.

Example 2.1. Suppose n = 1, t0 = 0, x0 = 0 and consider

f (t, x) = f (x) =

{
1, x < 0,
−1, x ≥ 0.

Then the IVP (2.1) has no solution. The proof of this claim is left as an exercise.
(Hint: Convince yourself that the ‘solution curve’ cannot move away from the
initial value, i.e. from zero, but the trivial function x(t) ≡ 0 is not a solution.)

The source for the ‘nonexistence’ problem encountered in Example 2.1 is
the discontinuity of f . In fact, the Peano existence theorem states that the IVP
(2.1) has a (local) solution around the initial time t = t0 if f is continuous.
However, this solution does not need to be unique:

Example 2.2. Assume again that n = 1, t0 = 0, x0 = 0, but this time around set

f (t, x) = f (x) = 3|x|2/3,

13
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which is continuous everywhere in R. In this case, the IVP (2.1) has an infinite
number of solutions. Indeed, let us introduce the family of functions

(2.2) xa,b(t) =


(t − a)3, t < a,
0, a ≤ t ≤ b,
(t − b)3, t > b,

where the parameters satisfy a ≤ 0 and b ≥ 0. Obviously, xa,b(0) = 0 and
straightforward calculations give

x′a,b(t) = 3(t − a)2 = 3|t − a|2 = 3|xa,b(t)|2/3, t < a,

x′a,b(t) = 0 = 3|xa,b(t)|2/3, a < t < b,

x′a,b(t) = 3(t − b)2 = 3|t − b|2 = 3|xa,b(t)|2/3, t > b.

Finally, checking the points t = a and t = b separately (e.g., draw a picture)
yields

x′a,b(a) = x′a,b(b) = 0 = 3|xa,b(a)|2/3 = 3|xa,b(b)|2/3.
To sum up, the formula (2.2) defines an infinite family of solutions for the IVP
parametrized by a and b.

2.2. Picard–Lindelöf iteration and unique solvability

In this section, it will be shown that a sufficient condition for the unique
solvability of (2.1) over some time interval I := [t−, t+] 3 t0 is that f : [t−, t+] ×
Rn
→ Rn is continuous and satisfies the Lipschitz condition

(2.3) | f (t, x) − f (t, y)| ≤ L|x − y|

for some L > 0 and for all t ∈ I, x, y ∈ Rn. We assume that this is the case for
the rest of this chapter.

Suppose that the IVP (2.1) has a (continuously differentiable) solution and
integrate both sides of the differential equation over the interval [t0, t]:∫ t

t0

x′(s) ds =

∫ t

t0

f (s, x(s)) ds.

Taking into account the initial condition of (2.1), we get

(2.4) x(t) = x0 +

∫ t

t0

f (s, x(s)) ds.

Hence, if x : R → Rn is a solution of the IVP (2.1), then it also satisfies (2.4).
On the other hand, any solution of (2.4) obviously has the property

x(t0) = x0 +

∫ t0

t0

f (s, x(s)) ds = x0,

and differentiating the integral identity (2.4) — recalling the fundamental the-
orem of calculus — results in

x′(t) = f (t, x(t)).

As a consequence, the IVP (2.1) and the integral equation (2.4) are equivalent.
This means, in particular, that if (2.4) has a unique solution, then the same
applies to (2.1).
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Our aim is to employ the Picard–Lindelöf iteration to show that (2.4) has
a unique solution on the interval I under our assumptions on f . The Picard–
Lindelöf iteration produces a sequence of continuous functions x j : I → Rn,
j = 0, 1, . . . , as follows:

(1) Choose the ‘initial guess’ x0 : I → Rn to be the constant function x0
≡

x0, where x0 ∈ Rn is the initial value.
(2) Given xk : I→ Rn, define the next iterate xk+1 : I→ Rn by the formula

xk+1(t) = x0 +

∫ t

t0

f (s, xk(s)) ds, t ∈ I.

We will prove that the Picard–Lindelöf iteration converges to a solution of (2.4)
as k→∞.

Lemma 2.3. The Picard–Lindelöf iteration converges uniformly to a continu-
ous function x : I→ Rn, that is,

max
t∈I
|x(t) − xk(t)| −→ 0,

as k→∞.

PROOF. Let us write the Picard–Lindelöf iterates in the form

(2.5) xk(t) = x0(t) + Sk(t), k = 1, 2, . . . ,

where

Sk(t) =

k∑
j=1

(
x j(t) − x j−1(t)

)
.

The idea is to prove the uniform convergence of the iteration with the help of
the Weierstrass M-test: If it is shown that |x j(t) − x j−1(t)| ≤ M j ∈ R for all t ∈ I
and

(2.6)
∞∑
j=1

M j < ∞,

then the function sequence Sk, k = 1, 2, . . . , converges uniformly over I to some
limit function S. In this case, xk converges uniformly to x = x0 + S due to (2.5).

Let us prove by induction that

(2.7) |x j(t) − x j−1(t)| ≤
1
j!

KL j−1
|t − t0|

j, t ∈ I,

where
K = max

t∈I
| f (t, x0(t))| = max

t∈I
| f (t, x0)|.

First of all,

|x1(t) − x0(t)| =
∣∣∣∣ ∫ t

t0

f (s, x0(s)) ds
∣∣∣∣ ≤ ∫ t

t0

| f (s, x0(s))| ds ≤ K|t − t0|,

which proves (2.7) for j = 1.
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Suppose then that (2.7) holds for some j = l ∈N. We have

|xl+1(t) − xl(t)| =
∣∣∣∣ ∫ t

t0

f (s, xl(s)) − f (s, xl−1(s)) ds
∣∣∣∣

≤

∫ t

t0

| f (s, xl(s)) − f (s, xl−1(s))| ds

≤

∫ t

t0

L |xl(s) − xl−1(s)| ds

≤
1
l!

KLl
∫ t

t0

|s − t0|
l ds, t ∈ I,

where the last two steps follow from the Lipschitz condition (2.3) and the as-
sumption that (2.7) holds for j = l, respectively. Considering the cases t > t0

and t < t0 separately and integrating the polynomials (s − t0)l and (t0 − s)l over
the interval [t0, t], we easily get

|xl+1(t) − xl(t)| ≤
1

(l + 1)!
KLl
|t − t0|

l+1,

which completes the inductive step. In consequence, (2.7) hold for any j ∈N.
In particular, since t, t0 ∈ I = [t−, t+],

(2.8) |x j(t) − x j−1(t)| ≤
1
j!

KL j−1(t+ − t−) j =: M j for all t ∈ I, j ∈N.

Hence, the uniform convergence of the sequence Sk, k = 1, 2, . . . , follows from
the Weierstrass M-test if we show that (2.6) holds for M j, j = 1, 2, . . . , defined
by (2.8):

∞∑
j=1

M j =
K
L

∞∑
j=1

1
j!

L j(t+ − t−) j =
K
L

( ∞∑
j=0

1
j!

L j(t+ − t−) j
− 1

)
=

K
L

(eL(t+−t−)
− 1) < ∞.

To finalize the proof, we note that according to the Uniform limit theorem,
if a sequence of continuous functions converges uniformly on I to some limit
function, then this limit is also continuous. �

Let us return to the definition of the Picard–Lindelöf iteration,

(2.9) xk+1(t) = x0 +

∫ t

t0

f (s, xk(s)) ds, k = 0, 1, . . . .

Because of Lemma 2.3, the left-hand side of (2.9) converges toward the con-
tinuous limit function x(t) for all t ∈ I as k → ∞. On the other hand, for the
right-hand side of (2.9) it holds that∣∣∣∣ ∫ t

t0

f (s, x(s)) ds −
∫ t

t0

f (s, xk(s)) ds
∣∣∣∣ ≤ ∫ t

t0

| f (s, x(s)) − f (s, xk(s))| ds

≤ L
∫ t

t0

|x(s) − xk(s)| ds

≤ L |t − t0|max
s∈I
|x(s) − xk(s)| −→ 0
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as k → ∞ due to Lemma 2.3. Consequently, taking the limit of (2.9) when k
goes to infinity leads to the equation

x(t) = x0 +

∫ t

t0

f (s, x(s)) ds, t ∈ I,

that is, the continuous limit function of the Picard–Lindelöf iteration satisfies
(2.4), and thus also (2.1).

Summarizing, we know that under the assumption that f : I × Rn
→ Rn

is continuous and satisfies the Lipschitz condition (2.3), the IVP (2.1) has at
least one solution over the interval I. To be completely satisfied, we still need
to show that this solution is unique. A tool suited for this task is the Gronwall
inequality.

Lemma 2.4 (Gronwall inequality). Let u : [0,T] → R be continuous, nonnega-
tive and satisfy

u(t) ≤ C + K
∫ t

0
u(s) ds

for some C,K ≥ 0 and all t ∈ [0,T]. Then it holds that

u(t) ≤ CeKt

for all t ∈ [0,T].

PROOF. To begin with, assume that C > 0 and define

v(t) := C + K
∫ t

0
u(s) ds,

whence
u(t) ≤ v(t) > 0, t ∈ [0,T].

Due to the fundamental theorem of calculus, we have

(2.10)
d
dt

ln(v(t)) =
v′(t)
v(t)

= K
u(t)
v(t)
≤ K, t ∈ [0,T].

Integrating (2.10) over the interval [0, t] results in

ln(v(t)) − ln(v(0)) ≤ Kt ⇐⇒ ln(v(t)) = ln(C) + Kt.

Since the exponential function is monotonically increasing,

u(t) ≤ v(t) ≤ eln(C)+Kt = CeKt, t ∈ [0,T],

which proves the claim when C > 0.
If C = 0, the preceding line of reasoning can be applied with any C = ε > 0,

meaning that
u(t) ≤ εeKt

−→ 0,
for all t ∈ [0,T] as ε → 0. Hence, it must hold that u ≡ 0, which completes the
proof. �

Now we are ready to complete the proof of unique solvability for (2.1).

Theorem 2.5. Assume that f : I × Rn
→ Rn is continuous and satisfies the

Lipschitz condition (2.3). Then, the IVP (2.1) has a unique solution x : I → Rn

on the interval I.
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PROOF. By virtue of the Picard–Lindelöf iteration, we have already estab-
lished that there exists at least one solution for (2.1) on I.

Let us thus assume that x : I → Rn and y : I → Rn are both (continuous)
solutions of (2.1), which is equivalent to

x(t) = x0 +

∫ t

t0

f (s, x(s)) ds and y(t) = x0 +

∫ t

t0

f (s, y(s)) ds, t ∈ I.

Subtracting these two identities gives

(2.11) |x(t) − y(t)| ≤
∫ t

t0

| f (s, x(s)) − f (s, y(s))| ds ≤ L
∫ t

t0

|x(s) − y(s)| ds, t ∈ I.

where we used (2.3).
Assume that t ≥ t0, set r = t − t0 ≥ 0 and denote

u(τ) = |x(t0 + τ) − y(t0 + τ)|.

It follows from (2.11) that

u(r) ≤ L
∫ t

t0

|x(s) − y(s)| ds = L
∫ t−t0

0
|x(t0 + τ) − y(t0 + τ)| dτ = L

∫ r

0
u(τ) dτ,

where we employed the change of variables τ = s−t0. Because u : [0, t+−t0]→ R
is clearly nonnegative and continuous, it follows from the Gronwall inequality
that

u(r) = 0, r ∈ [0, t+ − t0] ⇐⇒ x(t) = y(t), t ∈ [t0, t+],
which shows the uniqueness of the solution for (2.1) over the right half of I,
i.e. [t0, t+]. The claim for the left half [t−, t0] can be proved by a similar argu-
ment. �

2.3. Continuous dependence on the initial value

When considering the accuracy of numerical methods for solving IVPs of
the type (2.1), it is essential to have information about how the solution de-
pends on the initial value x0 (or error in this initial value). To simplify the
notation, we start by introducing a new definition.

Definition 2.6. The solution map ψ : I × I ×Rn
→ Rn associated to the ODE

(2.12) x′(t) = f (t, x(t))

is defined via
ψ(t, τ,u) = x(t),

where x(t) is the unique solution of (2.12) with the initial condition x(τ) = u ∈
Rn.

The solution map characterizes the dependence of the solution to (2.12) on
(i) the time, (ii) the initial time, and (iii) the initial value. It is easy to see that
the following identities are valid

∂
∂t
ψ(t, τ,u) = f (t, ψ(t, τ,u)),

ψ(τ, τ,u) = u.

Moreover, it follows from the uniqueness of the solution that

(2.13) ψ
(
t, s, ψ(s, τ,u)

)
= ψ(t, τ,u),
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which can be interpreted as follows: If one starts from the state u at time τ,
follows the solution curve until time s, gives the ‘current state’ ψ(s, τ,u) as a
new initial value at time s, and finally continues along the solution curve up
to time t, the end result is the same as the one produced by starting from u at
time τ and following the solution curve directly until time t. In other words,
the ‘intermediate stop’ at time s has no effect.

The following theorem proves the continuous dependence of the solution to
(2.1) on the initial data.

Theorem 2.7. Assume that f : I × Rn
→ Rn is continuous and satisfies the

Lipschitz condition (2.3). Then, it holds that

(2.14) |ψ(t, t0, x0) − ψ(t, t0, y0)| ≤ eL|t−t0 ||x0 − y0|

for all t ∈ I.

PROOF. Let x : I → Rn and y : I → Rn be the solutions of (2.12) with the
initial conditions x(t0) = x0 and y(t0) = y0, that is,

x′(t) = f (t, x(t)), x(t0) = x0,

and
y′(t) = f (t, y(t)), y(t0) = y0.

In other words, x(t) = ψ(t, t0, x0) and y(t) = ψ(t, t0, y0).
We denote

u(τ) = |x(t0 + τ) − y(t0 + τ)|2, τ ∈ [0, t+ − t0].

Straightforward differentiation yields

u′(τ) = 2
(
x′(t0 + τ) − y′(t0 + τ)

)
·

(
x(t0 + τ) − y(t0 + τ)

)
= 2

(
f (t0 + τ, x(t0 + τ)) − f (t0 + τ, y(t0 + τ))

)
·

(
x(t0 + τ) − y(t0 + τ)

)
≤ 2

∣∣∣ f (t0 + τ, x(t0 + τ)) − f (t0 + τ, y(t0 + τ))
∣∣∣ ∣∣∣x(t0 + τ) − y(t0 + τ)

∣∣∣
≤ 2L

∣∣∣x(t0 + τ) − y(t0 + τ)
∣∣∣2 ≤ 2L u(τ).

Integrating this inequality over the interval [0, s] leads to

0 ≤ u(s) ≤ u(0) + 2L
∫ s

0
u(τ) dτ.

Taking into account that u(0) = |x0 − y0|
2, the Gronwall inequality guarantees

that
u(s) ≤ |x0 − y0|

2e2Ls, s ∈ [0, t+ − t0].
Now, the claim for t ∈ [t0, t+] follows by choosing s = t− t0 and taking the square
root.

The case t ∈ [t−, t0] can be handled by a similar argument. �

2.4. Explicit solution methods

Suppose the solution of the ODE

(2.15) x′(t) = f (t, x(t))

is known at time t = τ ∈ R and let h > 0 be a given time step. Our preliminary
aim is to approximate the value x(τ + h).
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Assume that the solution x : R → Rn of (2.15) is so regular1 that we can
write a first order Taylor’s expansion around τ:

(2.16) x(τ + h) = x(τ) + hx′(τ) + O(h2) = x(τ) + h f (τ, x(τ)) + O(h2),

where O(h2) is an error term that satisfies

|O(h2)| ≤ Ch2,

with a fixed C > 0 for any small enough h > 0. (In fact, C depends on the size
of x′′ in the vicinity of τ.) By dropping out the error term from (2.16), one gets
the simplest numerical method for solving ODEs.

For simplicity, we assume that the initial condition is given at time t0 = 0,
i.e. x(0) = x0, and define a set of grid points by

t j = jh, j = 0, 1, 2, . . . .

Definition 2.8 (Euler’s method). We define the approximations x j ≈ x(t j) ∈ Rn,
j = 1, 2, . . . , via

x j+1 = x j + h f (t j, x j), j = 0, 1, . . . ,

which gives the Euler’s method.2

Since in a single step of the Euler’s method one ignores an error term of
the size O(h2), the local truncation error of the method is proportional to the
square of the step size. In what follows, it will be shown that this leads to a
global error of the form O(h) due to the accumulation of the local errors (and
the continuous dependence on the initial data).

Obviously, it would be nice to find numerical methods for which the local
truncation error is smaller than O(h2), say, O(h3). One such algorithm is the
(explicit) midpoint rule, which is motivated by the following observation.

Lemma 2.9. If a solution to (2.15) is smooth enough (three times continuously
differentiable) around t = τ, then

(2.17) x(τ + h) = x(τ) + h f
(
τ +

h
2
, x(τ) +

h
2

f (τ, x(τ))
)

+ O(h3)

for small enough h > 0.

PROOF. Let us write a second order Taylor’s expansion for x : R→ Rn:

x(τ + h) = x(τ) + hx′(τ) +
h2

2
x′′(τ) + O(h3)

= x(τ) + h f (τ, x(τ)) +
h2

2
d

dτ
f (τ, x(τ)) + O(h3)

= x(τ) + h f (τ, x(τ)) +
h2

2

(
ft(τ, x(τ)) + fx(τ, x(τ)) x′(τ)

)
+ O(h3)

= x(τ) + h f (τ, x(τ)) +
h2

2

(
ft(τ, x(τ)) + fx(τ, x(τ)) f (τ, x(τ))

)
+ O(h3),(2.18)

1Notice that the smoothness of f also induces smoothness on x.
2Observe that j indicates here the ‘discrete time’ not a component of a vector
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where ft(τ, x(τ)) ∈ Rn denotes the derivative of f with respect to its first argu-
ment and fx(τ, x(τ)) ∈ Rn×n the derivative with respect to the second argument
(a Jacobian matrix).3 This is the needed form for the left-hand side of (2.17).

In order to handle the right-hand side of (2.17), we denote

g(h) = f
(
τ +

h
2
, x(τ) +

h
2

f (τ, x(τ))
)
.

In particular,

g′(h) =
1
2

ft
(
τ +

h
2
, x(τ) +

h
2

f (τ, x(τ))
)

+
1
2

fx
(
τ +

h
2
, x(τ) +

h
2

f (τ, x(τ))
)

f (τ, x(τ)),

and a Taylor’s expansion gives

g(h) = g(0) + hg′(0) + O(h2) = f (τ, x(τ)) +
h
2

(
ft(τ, x(τ)) + fx(τ, x(τ)) f (τ, x(τ))

)
+ O(h2).

Hence, the right-hand side of (2.17) allows the representation

x(τ) + hg(h) = x(τ) + h f (τ, x(τ)) +
h2

2

(
ft(τ, x(τ)) + fx(τ, x(τ)) f (τ, x(τ))

)
+ O(h3).

(2.19)

The claim now follows by comparing the expansions for the left- and right-hand
sides of (2.17), i.e. (2.18) and (2.19). �

Definition 2.10 (Midpoint rule). We define the approximations x j ≈ x(t j) ∈ Rn,
j = 1, 2, . . . , via

x j+1 = x j + h f
(
t j +

h
2
, x j +

h
2

f (t j, x j)
)
, j = 0, 1, . . . ,

which gives the (explicit) midpoint rule.

If the local truncation error of a numerical method is of the form O(hp+1),
it is said to be of order p. The Euler’s method is thus of the first order and
the midpoint rule of the second order. In a similar manner, one can look for
numerical methods of even higher orders. As an example, the Classical Runge–
Kutta method has a local truncation error O(h5), and it is thus a fourth order
method.

We complete this section by studying how the local errors accumulate into
a global error.

Theorem 2.11. Let ψ : I × I ×Rn be the solution map of (2.15) for a continuous
f that satisfies the Lipschitz condition (2.3) (with, for simplicity, I = [0,T]).
Assume that the considered numerical method is of order p ≥ 1, that is, the
corresponding local truncation error satisfies

(2.20) |x j+1 − ψ(t j+1, t j, x j)| ≤ Chp+1,

for some C > 0 whenever f is smooth enough. Then, the global error satisfies

ε j := |x j − ψ(t j, 0, x0)| ≤
C
L

hp(eLT
− 1),

for all t j = jh ∈ [0,T].

3If you are afraid of Jacobian matrices, you may assume that n = 1 without loosing the main idea
of the proof.
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PROOF. According to (2.13),

ψ(t j, 0, x0) = ψ
(
t j, t j−1, ψ(t j−1, 0, x0)

)
.

In consequence, it follows from the triangle inequality, (2.20) and the continu-
ous dependence on the initial data (2.14) that

ε j = |x j − ψ(t j, 0, x0)|

≤ |x j − ψ(t j, t j−1, x j−1)| +
∣∣∣∣ψ(t j, t j−1, x j−1) − ψ

(
t j, t j−1, ψ(t j−1, 0, x0)

)∣∣∣∣
≤ Chp+1 + eL(t j−t j−1)

|x j−1 − ψ(t j−1, 0, x0))|

= Chp+1 + eLhε j−1.

We continue recursively to obtain

ε j ≤ Chp+1 + eLhε j−1

≤ Chp+1 + eLh(Chp+1 + eLhε j−2)

= Chp+1(1 + eLh) + e2Lhε j−2

≤ Chp+1(1 + eLh + e2Lh) + e3Lhε j−3

≤ Chp+1(1 + eLh + e2Lh + · · · + e( j−1)Lh) + e jLhε0.

Since
ε0 = |x0 − ψ(t0, 0, x0)| = |x0 − x0| = 0,

using the formula for a finite geometric series, we get

ε j = Chp+1
j−1∑
l=0

elLh = Chp+1 1 − (eLh) j

1 − eLh
= Chp+1 eL( jh)

− 1
eLh − 1

.

Because

eLh =

∞∑
l=0

1
l!

(Lh)l
≥ 1 + Lh

and 0 ≤ t j = jh ≤ T by assumption, we finally deduce the claim:

ε j ≤ Chp+1 eLt j − 1
eLh − 1

≤
C
L

hp(eLT
− 1).

�

2.5. Stability and stiff systems

Often the system modeled by the IVP (2.1) includes phenomena that die
out quickly. As an example, the half-life of some radioactive isotope may be
considerably shorter than of the others, or some subprocess of a chemical reac-
tion reaches equilibrium faster than the whole system. The ODEs that model
these kinds of systems are called stiff.

To model the quickly changing phenomena accurately, it is typically neces-
sary to use extremely small time steps in the numerical solver — far smaller
than required by the ‘other subprocesses’ of the examined system. This poten-
tially enormous computational load can be avoided by noticing that for rapidly
stabilizing processes it is more essential to correctly model the long-term be-
havior than to get all details right when the process still has high ‘change rate’
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(or derivative). In consequence, it is of interest to study how different numer-
ical methods succeed in predicting the state of a quickly stabilizing system at
the time t = ∞.

The suitability of a numerical method for solving a stiff system can be
tested by studying the model problem

(2.21) x′(t) = λx(t), x(0) = x0 , 0

where Re (λ) < 04 and t ≥ 0. Notice that the exact solution of (2.21) is x(t) =
x0eλt. In particular, it holds that

(2.22) lim
t→∞

x(t) = 0.

It would thus be desirable that the discrete ‘solution sequence’ x j ≈ x( jh) =
x(t j), j = 0, 1, . . . , produced by some numerical method would have this same
property, that is,

(2.23) lim
j→∞

x j = 0

for any step size h > 0. If (2.23) holds for a given numerical method and some
h > 0, the numerical method in question is said to be stable when applied to
(2.21) with the considered step size. Unfortunately, no explicit method, such
as the Euler’s method or the midpoint rule, is stable for all h > 0.

To concretize this claim, let us study how the Euler’s method fairs when
applied to (2.21). According to Definition 2.8,

x j+1 = x j + h f (t j, x j) = x j + hλx j = (1 + hλ)x j

since for (2.21) we have f (t, x) = λx. Using this identity recursively, we get

x j = (1 + hλ) jx0 =⇒ |x j| = |1 + hλ| j|x0|, j = 0, 1, . . . .

Denoting R(z) = 1 + z, one may thus give an explicit condition for the stability
of the Euler’s method:

(2.24) |R(hλ)| = |1 + z| < 1.

The function R is called the stability function (of the Euler’s method) and the
set

(2.25) S = {z ∈ C | |R(z)| < 1}

is the corresponding stability region. To sum up, the Euler’s method provides a
stable solution for (2.21) if and only if hλ belongs to the stability region (2.25).
Observe that (2.25) is the open disk of radius one around the point −1 in the
complex plane.

In particular, if R 3 λ < 0, it is easily deduced that

lim
j→∞

x j = 0 ⇐⇒ 0 < h < −
2
λ
,

where x j, j = 0, 1, . . . , is the numerical solution of (2.21) produced by the Euler’s
method. In other words, if λ � 0 — when the exact solution of (2.21) goes to
zero very fast as t → ∞ — the stability of the Euler’s method requires an
extremely small step size h > 0.

4For certain reasons, stability is usually studied with λ ∈ C, but λ ∈ R is the most important case
on this course
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It would be optimal if the stability region of a numerical method contained
the open left half of the complex plane, since then (2.22) for the exact solution
of (2.21) would imply (2.23) for the numerical method. This property is called
A-stability. As the stability function of any explicit numerical method5 is a
polynomial, the corresponding stability region is bounded; cf. (2.24) and the
homework set of week 9. Thus, no explicit numerical method can be A-stable
— which is unfortunate.

2.6. Implicit solution methods

The fundamental remedy for instability issues is the introduction of im-
plicit solution methods. We continue to study the numerical solution of the
ODE

(2.26) x′(t) = f (t, x(t)).

Assume once again that the exact solution to (2.26) is smooth enough close to
the point τ ∈ R and let us write a Taylor’s expansion at t = τ + h:

x(τ) = x(τ + h) + (−h)x′(τ + h) + O(h2) = x(τ + h) − h f
(
τ + h, x(τ + h)

)
+ O(h2),

which is equivalent to

x(τ + h) = x(τ) + h f
(
τ + h, x(τ + h)

)
+ O(h2).

By dropping out the local truncation error O(h2), we get the implicit Euler’s
method.

Definition 2.12 (Implicit Euler’s method). We define the estimates x j ≈ x(t j) ∈
Rn, j = 1, 2, . . . , via

(2.27) x j+1 = x j + h f (t j+1, x j+1), j = 0, 1, . . . ,

which gives the implicit Euler’s method.

Notice that x j+1 appears on both sides of (2.27), so it must be solved from
(2.27)6; in practice, this usually happens by some numerical (Newton-type)
method. In consequence, the implementation of the implicit Euler’s method
is not as straightforward as that of the (explicit) Euler’s method. The same
applies to other implicit methods, as well.

However, the extra workload required by implicit methods is often justifi-
able due to their superior stability properties. Indeed, let us apply the implicit
Euler’s method to the test problem (2.21), which leads to the recursion

x j+1 = x j + hλx j+1 ⇐⇒ x j+1 =
1

1 − hλ
x j, j = 0, 1, . . . ,

if hλ , 1. In other words,
x j = R(hλ) jx0,

where
R(z) =

1
1 − z

, z ∈ C,

5More precisely, of any explicit Runge–Kutta method.
6Hence, the word “implicit”.
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is the stability function of the implicit Euler’s method. In consequence, the
stability region of the implicit Euler’s method is

(2.28) S = {z ∈ C | |R(z)| < 1} =
{
z ∈ C

∣∣∣ ∣∣∣(1 − z)−1
∣∣∣ < 1

}
= {z ∈ C | |1 − z| > 1},

i.e., the open exterior of the disk with radius one around the point 1 in the
complex plane. In particular, the open left half of the complex plane is con-
tained in S, and thus the implicit Euler’s method is A-stable. Recall this means
that (2.22) for the exact solution of (2.21) implies (2.23) for the implicit Euler’s
method independently of the step size h > 0. However, since the stability re-
gion (2.28) is not exactly the open left half of the complex plane, it may happen
that (2.23) is valid even if (2.22) is not: The implicit Euler’s method satisfies
(2.23) for many λ with Re(λ) ≥ 0, for which (2.22) obviously does not hold.

As the local truncation error of the implicit Euler’s method is O(h2), The-
orem 2.11 tells us that the corresponding global error is of the form O(h) and
the implicit Euler’s method is of order p = 1. As for the explicit methods, it is
also possible to build implicit methods of arbitrarily high order.

Definition 2.13 (Implicit midpoint rule). We define the estimates x j ≈ x(t j) ∈
Rn, j = 1, 2, . . . , via

x j+1 = x j + h f
(
t j +

h
2
,

1
2

(x j + x j+1)
)
, j = 0, 1, . . . ,

which gives the implicit midpoint rule.

The implicit midpoint rule is a second order method — local error O(h3),
global error O(h2) — like its explicit counterpart. It also has good stability
properties: If the implicit midpoint rule is applied to (2.21), one ends up with

x j+1 = x j + hλ
(1
2

(x j + x j+1)
)
⇐⇒

(
1 −

1
2

hλ
)
x j+1 =

(
1 +

1
2

hλ
)
x j.

Solving for x j+1 yields

x j+1 = R(hλ)x j =⇒ R(hλ) jx0, j = 0, 1, . . . ,

where

R(z) =
1 + 1

2 z

1 − 1
2 z

is the stability function of the implicit midpoint rule.
It can be shown (Homework 2) that the stability region of the implicit mid-

point rule is exactly the open left half of the complex plane. Hence,

lim
t→∞

x(t) = 0 ⇐⇒ lim
j→∞

x j = 0,

where x(t) = x0eλt is the exact solution of

x′(t) = λx(t), x(0) = x0 , 0, λ ∈ C,

and x j, j = 0, 1, . . . , is the corresponding numerical solution produced by the
implicit midpoint rule.





CHAPTER 3

Numerical solution of the Laplace equation
(finite difference method)

The basic idea of finite difference methods is to approximate the considered
(partial) differential operator by a finite-dimensional linear operator, i.e. by a
matrix, that takes grid values of a function as its input. In this chapter, we
study how a finite difference method can be employed for numerical solution
of the Laplace (or Poisson) equation in simple geometries.

3.1. One-dimensional case

Consider a simple Dirichlet boundary value problem: Find u : [0, 1] → R
such that

(3.1)
{

u′′(x) = f (x), x ∈ (0, 1),
u(0) = α, u(1) = β,

where f : [0, 1] → R is continuous1 and α, β ∈ R. It is known that (3.1) has a
unique solution; this could be proved, e.g., by using techniques studied during
the first half of the course.

Let us figure out how the solution of (3.1) can be approximated numerically
if the values of f are known on the spatial grid

(3.2) x j = jh, j = 1, 2, . . . ,m,

where h = 1/(m + 1). Our aim is to estimate the values of the solution u to
(3.1) on this same grid; observe that the points x0 = 0 and xm+1 = 1 are not
interesting because u(0) and u(1) are defined by the boundary conditions of
(3.1).

Let v : R → R be an arbitrary four times continuously differentiable func-
tion. We approximate its second derivative at x ∈ R with the help of suitable
Taylor’s expansions with h > 0:

v(x + h) = v(x) + hv′(x) +
h2

2
v′′(x) +

h3

6
v′′′(x) + O(h4),

v(x − h) = v(x) + (−h)v′(x) +
(−h)2

2
v′′(x) +

(−h)3

6
v′′′(x) + O(h4).

Adding these formulas, we get

v(x − h) + v(x + h) = 2v(x) + h2v′′(x) + O(h4),

or equivalently,

(3.3) v′′(x) =
1
h2

(
v(x − h) − 2v(x) + v(x + h)

)
+ O(h2).

1This assumption could be relaxed considerably.

27
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By dropping out the error term O(h2) from (3.3), one obtains the standard sec-
ond order central difference approximation.

For the solution of (3.1) and the grid points (3.2), the difference approxi-
mation (3.3) takes the form

u′′(x1) ≈
1
h2

(
α − 2u(x1) + u(x2)

)
,

u′′(x j) ≈
1
h2

(
u(x j−1) − 2u(x j) + u(x j+1)

)
, j = 2, . . . ,m − 1,(3.4)

u′′(xm) ≈
1
h2

(
u(xm−1) − 2u(xm) + β

)
,

where we used the boundary conditions u(0) = u(x0) = α and u(1) = u(xm+1) = β.
Equating the right-hand sides of these equations with the corresponding grid
values of f leads to a system of linear equations:

1
h2 (−2uh

1 + uh
2) = f (x1) −

α

h2 ,

1
h2 (uh

j−1 − 2uh
j + uh

j+1) = f (x j), j = 2, . . . ,m − 1,(3.5)

1
h2 (uh

m−1 − 2uh
m) = f (xm) −

β

h2 ,

where (hopefully) uh
j ≈ u(x j), j = 1, . . . ,m. The linear system (3.5) can be written

as a matrix equation,

(3.6) ∆h
D−Duh = bh,

where uh = [uh
1,u

h
2, . . . ,u

h
m]T, bh = [ f (x1)−α/h2, f (x2), . . . , f (xm−1), f (xm)−β/h2]T

∈ Rm

and

(3.7) ∆h
D−D =

1
h2



−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


∈ Rm×m

is a tridiagonal matrix.
The Dirichlet boundary value problem (3.1) can be solved approximately

by determining the vector uh
∈ Rm that satisfies (3.6); the unique solvability

of (3.6) is a by-product of Lemma 3.1 presented below.2 To be more precise,
assuming that u and its first four derivatives are continuous on [0, 1]3, it holds
that

(3.8) max
1≤ j≤m

|u(x j) − uh
j | ≤ Ch2

‖u‖C4([0,1]), C > 0,

where
‖u‖C4([0,1]) = max

0≤η≤4
max
x∈[0,1]

|u(η)(x)|.

2A square matrix is injective, which is equivalent to invertibility, if and only if zero is not its
eigenvalue.
3The smoothness of u depends on the regularity of the source f in (3.1).
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The proof of (3.8) is omitted, but it should, however, be noted that similar esti-
mates can also be proved for more general problems than (3.1): If the exact so-
lution of the considered partial differential equation (PDE) is smooth enough,
the numerical solution produced by a (reasonable) finite difference method is
typically as accurate as the discretization of differential operators in question
— in our case, the accuracy is O(h2), as indicated by (3.3).

For reasons that will become more apparent in the following chapters, we
next determine the eigenvalues and eigenvectors of ∆h

D−D.

Lemma 3.1. The eigenvalues of the matrix ∆h
D−D ∈ R

m×m are

λl = −
4
h2 sin2

(πlh
2

)
, l = 1, 2, . . . ,m,

with the corresponding orthonormal eigenvectors

vl =
√

2h


sin(πlx1)
sin(πlx2)
sin(πlx3)

...
sin(πlxm)


∈ Rm, l = 1, 2, . . . ,m,

where
√

2h is a normalization constant. In particular, all eigenvalues of ∆h
D−D

lie in the open interval (−4/h2, 0).

PROOF. We denote al = ∆h
D−Dvl and aim at proving that al = λlvl, l =

1, 2, . . . ,m. It is easy to see that the jth component of al satisfies

(3.9) al
j =

√
2h

h2

(
sin(πlx j−1) − 2 sin(πlx j) + sin(πlx j+1)

)
,

which holds for all j = 1, 2, . . . ,m — including j = 1 and j = m since sin(πlx0) =
sin(0) = 0 and sin(πlxm+1) = sin(lπ) = 0. According to the sum and difference
identities of trigonometric functions,

sin(πlx j±1) = sin(πl( j ± 1)h) = sin(πl jh) cos(πlh) ± cos(πl jh) sin(πlh)

= sin(πlx j) cos(πlh) ± cos(πlx j) sin(πlh).

Substituting these in (3.9) yields

al
j =

√
2h

h2

(
2 sin(πlx j) cos(πlh) − 2 sin(πlx j)

)
=

2
h2

(
cos(πlh) − 1

)√
2h sin(πlx j) =

2
h2

(
cos(πlh) − 1

)
vl

j,

for all j = 1, 2, . . . ,m. Due to the definition of al, the fact that λl is an eigen-
value of ∆h

D−D, with the associated eigenvector vl
∈ Rm, follows now from the

trigonometric identity

cos(πlh) − 1 = −2 sin2
(πlh

2

)
.

Since sine is monotonically increasing on the open interval (0, π/2), the
eigenvalues

λl = −
4
h2 sin2

(πlh
2

)
= −

4
h2 sin2

( πl
2(m + 1)

)
, l = 1, 2, . . . ,m,
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form a monotonically decreasing sequence, that is,

0 > λ1 > λ2 > · · · > λm−1 > λm.

In particular, we have found m distinct eigenvalues for ∆h
D−D ∈ R

m×m. Since
it is well known that for a symmetric matrix, such as ∆h

D−D, the eigenvectors
corresponding to different eigenvalues are mutually orthogonal,4 the only re-
maining thing to prove is that |vl

| = 1, l = 1, . . . ,m.
It holds that

1
2h
|vl
|
2 =

m∑
j=1

sin2(πlx j) =
1
2

m∑
j=1

(
1 − cos(2πlx j)

)
=

m
2
−

1
2

m∑
j=1

Re
(
ei2πlx j

)
=

m
2
−

1
2

Re
( m∑

j=1

ei2πlx j
)

=
m + 1

2
−

1
2

Re
( m∑

j=0

(
ei2πlh

) j)

=
m + 1

2
−

1
2

Re

1 −
(
ei2πlh

)m+1

1 − ei2πlx j

 .
Recalling that h = 1/(m + 1), this simplifies to

1
2h
|vl
|
2 =

1
2h
−

1
2

Re
(

1 − ei2πl

1 − ei2πlx j

)
=

1
2h
, l = 1, 2, . . . ,m,

since ei2πl = 1 for all l ∈ Z. A multiplication by 2h completes the proof. �

Let us next examine what happens if one of the two Dirichlet boundary
conditions in (3.1) is changed into a Neumann boundary condition, that is, we
consider the mixed boundary value problem

(3.10)
{

u′′(x) = f (x), x ∈ (0, 1),
−u′(0) = α, u(1) = β.

We continue to assume that f is known at the grid points (3.2) and approximate
the second derivative of u by the formulas

u′′(x1) ≈
1
h2

(
u(x0) − 2u(x1) + u(x2)

)
,

u′′(x j) ≈
1
h2

(
u(x j−1) − 2u(x j) + u(x j+1)

)
, j = 2, . . . ,m − 1,(3.11)

u′′(xm) ≈
1
h2

(
u(xm−1) − 2u(xm) + β

)
.

Notice that the difference between these equations and (3.4) is that now we
cannot directly use the left boundary condition of (3.10) to replace u(x0) in the
first equation of (3.11). As (3.11) constitutes of m equations, the m + 1 point
values u(x0),u(x1), . . . ,u(xm) appearing in (3.11) cannot be directly estimated by
equating the right-hand sides of (3.11) with the corresponding grid values of
f . Hence, we need to get rid of one grid value of u in (3.11); this is established

4λk(vl)Tvk = (vl)T(λkvk) = (vl)TAvk = ((vl)TAvk)T = (vk)TAvl = λl(vk)Tvl = λl(vl)Tvk
⇒ (vl)Tvk = 0
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by using the Neumann condition −u′(0) = α to give u(x0) = u(0) approximately
with the help of u(x1), u(x2) and α.

Lemma 3.2. If v : [0, 1]→ R is smooth enough close to the left end point x = 0,
then

v′(0) =
1

2h

(
− 3v(0) + 4v(h) − v(2h)

)
+ O(h2)

for all small enough h > 0.

PROOF. Let us write two origin-centered Taylor’s expansions for v:

v(h) = v(0) + hv′(0) +
h2

2
v′′(0) + O(h3),

v(2h) = v(0) + (2h)v′(0) +
(2h)2

2
v′′(0) + O(h3).

We multiply the first equation by four and subtract the second one:

4v(h)−v(2h)=3v(0) + 2hv′(0) + O(h3) ⇐⇒ v′(0)=
1

2h

(
−3v(0) + 4v(h)−v(2h)

)
+ O(h2),

which completes the proof. �

If the exact solution of (3.10) is smooth enough, Lemma 3.2 tells us that

−α = u′(x0) = u′(0) ≈
1
2h

(
− 3u(x0) + 4u(x1) − u(x2)

)
,

where we utilized the definition of the grid points in (3.2). Solving for u(x0)
yields

u(x0) ≈
1
3

(
4u(x1) − u(x2) + 2hα

)
,

which may be substituted in the first equation of (3.11) to obtain

(3.12) u′′(x1) ≈
2

3h2

(
− u(x1) + u(x2) + hα

)
.

Equating the right-hand sides of (3.12) and the other equations of (3.11) with
the grid values f (x1), f (x2), . . . , f (xm), finally results in the matrix equation

∆h
N−Duh = bh,

where uh = [uh
1,u

h
2, . . . ,u

h
m]T
∈ Rm contains the estimates for u(x1),u(x2), . . . ,u(xm),

bh = [ f (x1) − (2α)/(3h), f (x2), . . . , f (xm−1), f (xm) − β/h2]T
∈ Rm and

∆h
N−D =

1
h2



−2/3 2/3
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2


∈ Rm×m

is a tridiagonal difference matrix.

Remark 3.3. The subscripts of the matrices ∆h
D−D and ∆h

N−D indicate the types
of the considered boundary conditions: ∆h

D−D is a discretization of the second
spatial derivative with Dirichlet boundary conditions at both ends of [0, 1],
whereas ∆h

N−D has a Neumann boundary condition on the left and a Dirich-
let condition on the right. In the same manner, one can also introduce ∆D−N
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and ∆N−N. Like ∆h
D−D ∈ R

m×m, also ∆h
N−D,∆

h
D−N ∈ R

m×m are invertible (an ex-
ercise). Furthermore, it can be shown (non-trivially) that the eigenvalues of
∆h

N−D and ∆h
D−N lie in the open interval (−4/h2, 0), which was deduced for ∆h

D−D
already in Lemma 3.1. However, ∆h

N−N ∈ R
m×m is singular, i.e. noninvertible, as

explained below.

If both boundary conditions are of the Neumann type, that is, we consider
the Neumann boundary value problem

(3.13)
{

u′′(x) = f (x), x ∈ (0, 1),
−u′(0) = α, u′(1) = β,

the situation gets slightly more complicated. Indeed, the problem (3.13) has a
solution only if

(3.14)
∫ 1

0
f (x) dx =

∫ 1

0
u′′(x) dx = u′(1) − u′(0) = α + β.

In electrostatics, this condition can be explained as follows: If u models the
electromagnetic potential inside the homogeneous ‘body’ (0, 1), then f may be
interpreted as an internal current source and α, β as the currents flowing out
from the endpoints of the body. Thus, (3.14) corresponds to the law of charge
conservation. On the other hand, if (3.13) has a solution, it is only unique up
to an additive constant: If u is a solution of (3.13), then so is u + c because the
differentiations in (3.13) make the constant c ∈ R disappear. This nonunique-
ness corresponds to the freedom in the choice of the ground level of potential
in electrostatics.

These fundamental properties of (3.13) are inherited by the associated dis-
cretized system that has

∆h
N−N =

1
h2



−2/3 2/3
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
2/3 −2/3


∈ Rm×m

as its coefficient matrix. In particular, ∆h
N−N is not invertible (an exercise).

3.2. Two-dimensional case

Next, we consider how the Laplace operator can be discretized in the open
unit square Ω = (0, 1) × (0, 1). Assume v : Ω → R is smooth enough and, for
simplicity, that

(3.15) v(x) = 0 for all x ∈ ∂Ω,

which has the short-hand notation v|∂Ω = 0. Moreover, suppose that the values
of v are known at the two-dimensional grid points

( jh, kh) ∈ Ω, j, k = 1, 2, . . . ,m,

where h = 1/(m + 1). We denote

v j,k = v( jh, kh), j, k = 1, 2, . . . ,m,



3.2. TWO-DIMENSIONAL CASE 33

and introduce the matrix of grid values

(3.16) V =


v1,1 . . . v1,m
...

...
vm,1 . . . vm,m

 ∈ Rm×m.

In the same spirit, Vxx ∈ Rm×m and Vyy ∈ Rm×m denote the matrices containing
the grid values of vxx and vyy, respectively.

As in the one-dimensional case, the second (partial) derivatives of v can be
approximated via

vxx( jh, kh) ≈
1
h2

(
v j−1,k − 2v j,k + v j+1,k

)
vyy( jh, kh) ≈

1
h2

(
v j,k−1 − 2v j,k + v j,k+1

)
,

where j, k = 1, 2, . . . ,m. Notice that

v0,k = v j,0 = vm+1,k = v j,m+1 = 0, j, k = 0, 1, . . . ,m,m + 1,

by virtue of (3.15). In consequence, it is straightforward to deduce that

(3.17) Vxx ≈ ∆h
D−DV and Vyy ≈ V(∆h

D−D)T.

Notice that in the first equation of (3.17), the ‘one-dimensional’ discretized sec-
ond derivative with Dirichlet boundary conditions, i.e. ∆h

D−D ∈ R
m, operates on

the columns of V, whereas in the second equation it operates on the rows of V.5

Summing the to formulas in (3.17), we get an approximate representation for
the grid values of ∆v = vxx + vyy, namely

∆h,2V := ∆h
D−DV + V(∆h

D−D)T.

Obviously, the mapping ∆h,2 : Rm×m
→ Rm×m is linear, and thus it can be

represented as an element of Rm2
×m2 with respect to a suitable basis of Rm×m.

To this end, let us introduce an auxiliary linear map T : Rm×m
→ Rm2 which

piles the columns of a given matrix to form a ‘long vector’. To be precise, if
A = [a1, a2, . . . , am] ∈ Rm×m, then

(3.18) T(A) =


a1
a2
...

am

 .
Notice that the inverse map T−1 = Rm2

→ Rm×m builds a square matrix out
of a m2-dimensional vector. In addition, we define the Kronecker product of
A,B ∈ Rm×m by

B ⊗ A =


B11A B12A . . . B1mA
B21A B22A . . . B2mA
...

... . . .
...

Bm1A Bm2A . . . BmmA

 ∈ Rm2
×m2
.

5Since ∆h
D−D is symmetric, the transposition in the second formula of (3.17) is needless. However,

since difference matrices corresponding to other boundary conditions may not be symmetric, the
transposition is included here for the sake of generality.
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Lemma 3.4. For any A ∈ Rm×m, it holds that

∆h,2A = ∆h
D−DA + A(∆h

D−D)T = T−1
(
(I ⊗ ∆h

D−D + ∆h
D−D ⊗ I) T(A)

)
,

where I ∈ Rm×m is the identity matrix.

PROOF. Although the proof is not very difficult — only technical and lengthy
— it is omitted. �

Let us finally consider the Dirichlet boundary value problem

(3.19)
{

∆u = f in Ω,

u = 0 on ∂Ω,

where Ω still is the unit square. If the grid values of the source f : Ω→ R are
stuffed into the matrix F ∈ Rm×m, that is,

F j,k = f ( jh, kh), j, k = 1, 2, . . . ,m,

and the to-be-solved approximate grid values of u into the matrix U,

U j,k ≈ u( jh, kh), j, k = 1, 2, . . . ,m,

then the discretized version of (3.19) reads

(3.20) ∆h
D−DU + U(∆h

D−D)T = F.

In practice, this is solved by considering the corresponding ‘vector formulation’

(3.21) (I ⊗ ∆h
D−D + ∆h

D−D ⊗ I)uh = f h,

where uh = T(U) ∈ Rm2 and f h = T(F) ∈ Rm2 . The equivalence of the formula-
tions (3.20) and (3.21) is guaranteed by Lemma 3.4.

Remark 3.5. Different (homogeneous) boundary conditions on different edges
of the unit square can be accounted for by using appropriate one-dimensional
discretizations of the second derivative. As an example, if the considered prob-
lem is 

∆u = f in Ω,

u(0, · ) = 0 on (0, 1),
ux(1, · ) = 0 on (0, 1),
−uy( · , 0) = 0 on (0, 1),
u( · , 1) = 0 on (0, 1),

the equation (3.20) transforms into

∆h
D−NU + U(∆h

N−D)T = F

and (3.20) into
(I ⊗ ∆h

D−N + ∆h
N−D ⊗ I)uh = f h.

Remark 3.6. Handling nonhomogeneous boundary conditions is naturally also
possible: The boundary values contribute to the source vector f h

∈ Rm in a cer-
tain way (a nontrivial exercise).
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Remark 3.7. In a similar way, one could also discretize more general elliptic
PDEs of the form

−∇ · (a∇u) + b · ∇u + cu = f in Ω

accompanied by suitable boundary conditions. Here, a : Ω → R, b : Ω → R2

and c : Ω → R are regular enough coefficient functions, with case-dependent
positivity properties. However, in more complicated geometries, the finite dif-
ference way of thinking becomes complicated, and it is often more sensible to
resort to finite element methods (cf. Chapter 6).





CHAPTER 4

Numerical solution of the heat equation
(finite difference method)

When a partial differential equation includes both time and a spatial vari-
able, their different natures must be taken into account in the discretization:
For the spatial variable, one usually has boundary conditions (or conditions for
the behavior at infinity), while the behavior in time is restricted by an initial
condition, that is, the state of the examined system is predefined, say, at t = 0.
If the studied phenomenon is first discretized with respect to the spatial vari-
able, one typically ends up with an IVP for a system of ODEs, which can then
be numerically solved by resorting to the techniques in Chapter 2.

Consider the one-(spatial)-dimensional Dirichlet initial and boundary value
problem

(4.1)


ut(x, t) = cuxx(x, t) + f (x, t), t > 0, x ∈ (0, 1),
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = g(x), x ∈ (0, 1).

If c > 0 and f : (0, 1) × (0,∞) → R, g : (0, 1) → R are regular enough, it can be
shown that (4.1) has a unique solution u : [0, 1]× [0,∞)→ R, whose smoothness
(and behavior as t → ∞) depends on the initial condition g and, in particular,
on the source f .

We start by discretizing (4.1) with respect to the spatial variable; we con-
tinue to employ the one-dimensional spatial grid (3.2). Applying the standard
central difference approximation (3.3) to uxx gives
(4.2)
ut(x j, t) =

c
h2

(
u(x j−1, t)− 2u(x j, t) + u(x j+1, t)

)
+ f (x j, t) + O(h2), j = 1, 2, . . . ,m, t > 0,

assuming that u is smooth enough. Accounting for the Dirichlet boundary
conditions (u(x0, t) = u(xm+1, t) = 0) and dropping out the error term O(h2) in
(4.2), the spatially discretized version of (4.1) becomes

(4.3)
{

(uh)′(t) = c∆h
D−Duh(t) + f h(t), t > 0,

uh(0) = gh,

where ∆h
D−D ∈ R

m×m is the standard discretization of the second spatial deriva-
tive with Dirichlet boundary conditions and

uh(t) =


uh

1(t)
uh

2(t)
...

uh
m(t)

 , f h(t) =


f (x1, t)
f (x2, t)
...

f (xm, t)

 , gh =


g(x1)
g(x2)
...

g(xm)

 .

37
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The idea is that uh
j (t) ≈ u(x j, t) for j = 1, 2, . . . ,m and t > 0.

Remark 4.1. There are no boundary conditions in (4.3) because those of (4.1)
have already been included in the structure of the difference matrix ∆h

D−D.

As the problem (4.3) includes no spatial variable, it is an IVP for a system
of ordinary differential equation. In particular, (4.3) can be discretized by re-
sorting to the methodology of Chapter 2. As an example, the (explicit) Euler’s
method results in the recursion

(4.4)

 uh
k+1 = uh

k + δ
(
c∆h

D−Duh
k + f h(tk)

)
, k = 0, 1, . . . ,

uh
0 = gh,

where the time grid is defined by tk = kδ, k = 0, 1, 2, . . . , with δ > 0 being
the time step size, and uh

k ≈ uh(tk). Putting together both the spatial and the
time discretization, the hope is that (uh

k) j ≈ u(x j, tk), for j = 1, 2, . . . ,m and k =
0, 1, 2, . . . .

Unfortunately, the most simple discretization of (4.1) provided by (4.4) has
no practical use due to the weak stability properties of the Euler’s method. To
concretize this claim, we assume that f ≡ 0, whence it is known that for any
initial data g,

lim
t→∞

u(x, t) = 0

uniformly with respect to x ∈ (0, 1). Although we omit the proof of this claim, its
physical interpretation is simple: If the end points of the ‘rod’ [0, 1] are at the
fixed temperature 0 and the rod itself is not heated externally, it is obvious that
at ‘t = ∞’ the whole rod is at the zero temperature independently of the initial
temperature distribution g. As for the stiff IVPs studied in Chapter 2, any
reasonable numerical solution of (4.1) should also exhibit this same general
behavior; in particular, the solution sequence produced by the iteration (4.4)
should satisfy

lim
k→∞

uh
k = 0 ∈ Rn,

if f h(t) = 0 for all t ≥ 0. Notice that in this case (4.4) may be given compactly as

(4.5) uh
k = (I + δc∆h

D−D)kgh, k = 0, 1, 2, . . . ,

where I ∈ Rm×m is the identity matrix.

Lemma 4.2. It holds that

lim
k→∞

(I + δc∆h
D−D)k = 0 ∈ Rm×m,

or equivalently
lim
k→∞

uh
k = 0 ∈ Rm

for uh
k of (4.5) with all gh

∈ Rm, if and only if the time step size δ > 0 satisfies

δ <
h2

2c

(
sin2

( mπ
2(m + 1)

))−1

.

PROOF. According to Lemma 3.1, ∆h
D−D ∈ R

m×m has the eigenvalues

λl = −
4
h2 sin2

(πlh
2

)
= −

4
h2 sin2

( πl
2(m + 1)

)
, l = 1, 2, . . . ,m.
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It follows that the matrix I + δc∆h
D−D ∈ R

m×m has the eigenvalues

µl = 1 + δcλl, l = 1, 2, . . . ,m.

Indeed, if vl is the (normalized) eigenvector of ∆h
D−D corresponding to the eigen-

value λl, then
(I + δc∆h

D−D)vl = vl + δcλlvl = (1 + δcλl)vl,

for all l = 1, 2, . . . ,m.
Due to the strict monotonicity of sine on the interval (0, π/2), we know that

0 > λ1 > λ2 > · · · > λm−1 > λm,

and thus also

(4.6) µ1 > µ2 > · · · > µm−1 > µm

since c, δ > 0 by assumption. In particular, as I + δc∆h
D−D ∈ R

m×m has m distinct
eigenvalues, it is diagonalizable. Hence, it holds that (Homework 11)

lim
k→∞

(I + δc∆h
D−D)k = 0 ∈ Rm×m

if and only if |µl| < 1 for all l = 1, 2, . . . ,m. By virtue of (4.6), we thus have

lim
k→∞

(I + δc∆h
D−D)k = 0 ⇐⇒ µ1 < 1 and µm > −1.

First of all, since λ1 < 0 and c, δ > 0,

µ1 = 1 + δcλ1 < 1

holds trivially. On the other hand,

µm = 1 + δcλm = 1 −
4δc
h2 sin2

( mπ
2(m + 1)

)
> −1

if and only if

δ <
h2

2c

(
sin2

( mπ
2(m + 1)

))−1

,

which completes the proof. �

Remark 4.3. Because for large m ∈N,
mπ

2(m + 1)
≈
π
2
,

and thus
sin2

( mπ
2(m + 1)

)
≈ 1,

the assertion of Lemma 4.2 should usually be read as

0 < δ ≤
h2

2c
=⇒ lim

k→∞
(I + δc∆h

D−D)k = 0.

The above result on the stability of the discretization (4.4) can be inter-
preted as follows: If the spatial discretization is fine, i.e., h = 1/(m + 1) is small,
then the time step size δ > 0 of the Euler’s method must be chosen extremely
small in order to get stable numerical solutions. As an example if c = 1 and
m = 99, i.e. h = 10−2, then the stability condition for the discretization (4.4)
reads

δ ≤
(10−2)2

2
= 5 · 10−5 ,



40 4. NUMERICAL SOLUTION OF THE HEAT EQUATION (FINITE DIFFERENCE METHOD)

which is rather restrictive. Due to these kinds of stability problems, the time
discretization of the heat equation is usually done by some implicit method.

Applying the implicit Euler’s method to the spatially discretized IVP (4.3)
leads to the algorithm

(4.7)

 uh
k+1 = uh

k + δ
(
c∆h

D−Duh
k+1 + f h(tk+1)

)
, k = 0, 1, . . . ,

uh
0 = gh,

where the time grid tk, k = 0, 1, 2, . . . , f : (0,∞)→ Rm and gh
∈ Rm are as in (4.4).

Once again, the aim is that (uh
k) j ≈ u(x j, tk) for j = 1, 2, . . . ,m and k = 0, 1, 2, . . . .

The ‘next iterate’ uh
k+1 can be solved from the first equation of (4.7) to obtain an

‘explicit form’ for the considered numerical method:

(4.8)

 uh
k+1 = (I − δc∆h

D−D)−1
(
uh

k + δ f h(tk+1)
)
, k = 0, 1, . . . ,

uh
0 = gh.

Notice that this recursion is well defined: The matrix I − δc∆h
D−D ∈ R

m×m is
invertible because it has m distinct eigenvalues that are strictly larger than
zero1; see the proof of Lemma 4.2.

Analogously, an application of the implicit midpoint rule to (4.3) yields uh
k+1 = uh

k + δ
(
c∆h

D−D

(
1
2 (uh

k + uh
k+1)

)
+ f h(tk + δ/2)

)
, k = 0, 1, . . . ,

uh
0 = gh,

and solving for uk+1 gives
(4.9) uh

k+1 =
(
I − 1

2δc∆h
D−D)−1

[(
I + 1

2δc∆h
D−D)uh

k + δ f h(tk + δ/2)
]
, k = 0, 1, . . . ,

uh
0 = gh.

The algorithm (4.9) is the so-called the Crank–Nicolson method, which is a
popular technique for solving parabolic PDEs. As in the case of (4.8), it is easy
to see that all eigenvalues of I − 1

2δc∆h
D−D are positive, and thus the iteration

(4.9) is well defined for all δ > 0.

Remark 4.4. Although the implementation of (4.8) or (4.9) requires inverting
a sparse m×m matrix at each step of the time iteration,2 this is usually worth-
while as both (4.8) and (4.9) produce stable solutions for any δ > 0 (Homework
11), which makes it possible to use far larger time step sizes than in the case
of (4.4).

If the boundary conditions of (4.1) are not homogeneous, this must be taken
into account in the spatially discretized problem (4.3). As an example, let us
consider the initial and boundary value problem

(4.10)


ut(x, t) = cuxx(x, t) + f (x, t), t > 0, x ∈ (0, 1),
u(0, t) = α, ux(1, t) = β, t > 0,
u(x, 0) = g(x), x ∈ (0, 1).

1A square matrix is invertible if and only if zero is not its eigenvalue.
2It is actually debatable how the multiplications by the matrix inverse in (4.8) or (4.9) are per-
formed most efficiently; on this course, you can always resort to the ‘backslash’ operation of MAT-
LAB.
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For the central grid points x2, x3, . . . , xm−1, we can directly use the spatially dis-
cretized equations (4.2), but for the endpoints x1 and xm we need to account
for the difference in boundary conditions between (4.1) and (4.10). As when
handling nonhomogeneous boundary conditions in Chapter 3, at x1 we get the
approximate equation

(4.11) ut(x1, t) ≈
c
h2

(
α − 2u(x1, t) + u(x2, t)

)
+ f (x1, t),

where the left boundary condition of (4.10), u(0, t) = u(x0, t) = α, was used. On
the other hand, employing the ‘right endpoint version’ of Lemma 3.2,

β = ux(1, t) = ux(xm+1, t) ≈
1

2h

(
u(xm−1, t) − 4u(xm, t) + 3u(xm+1, t)

)
,

i.e.,

(4.12) u(xm+1, t) =
1
3

(
− u(xm−1, t) + 4u(xm, t) + 2hβ

)
,

we may approximate at xm as follows:

ut(xm, t) ≈
c
h2

(
u(xm−1, t) − 2u(xm, t) + u(xm+1, t)

)
+ f (xm, t)

≈
c
h2

(2
3

u(xm−1) −
2
3

u(xm, t) +
2h
3
β
)

+ f (xm, t).(4.13)

Combining (4.11) and (4.13) with (4.2) for j = 2, . . . ,m−1, we obtain the spatially
discretized problem corresponding to (4.10):

(4.14)
{

(uh)′(t) = c∆h
D−Nuh(t) + bh(t), t > 0,

uh(0) = gh,

where ∆h
D−N is the standard approximation of the second derivative with a

Dirichlet boundary condition on the left and a Neumann condition on the right,
uh : (0,∞)→ Rm gives the approximations for the grid values of the solution to
(4.10), gh

∈ Rm is as in (4.3) and

bh(t) =



f (x1, t) +
cα
h2

f (x2, t)
...

f (xm−1, t)

f (xm, t) +
2cβ
3h


.

The boundary values appearing in (4.10) are thus visible in the source vector
bh : (0,∞) → Rm of (4.14); notice that the case when α and/or β are time-
dependent can be handled analogously. The problem (4.14) can be solved by
some suitable (implicit) method for IVPs, such as the implicit midpoint rule.

We complete the discussion on solving parabolic initial/boundary value
problems using finite difference methods by considering a simple setting in
the unit square Ω = (0, 1) × (0, 1):

(4.15)


ut(x, t) = c∆u(x, t) + f (x, t), t > 0, x = (x1, x2) ∈ Ω,
−ux1 (0, x2, t) = ux1 (1, x2, t) = 0, x2 ∈ (0, 1), t > 0,
u(x1, 0, t) = ux2 (x1, 1, t) = 0, x1 ∈ (0, 1), t > 0,
u(x, 0) = g(x), x ∈ Ω.
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Following the discretization of the two-dimensional Poisson equation (3.19),
we denote by U : (0,∞) → Rm×m the approximations for the grid values of the
solution to (4.15), i.e.,

U j,k(t) ≈ u( jh, kh, t), j, k = 1, 2, . . . ,m, t > 0,

where h = 1/(m + 1). Similarly, F : (0,∞)→ Rm×m and G ∈ Rm×m are defined via

F j,k(t) = f ( jh, kh, t), G j,k = g( jh, kh), j, k = 1, 2, . . . ,m.

Finally, let us denote

uh(t) = T(U(t)), f h(t) = T(F(t)), gh = T(G),

where T : Rm×m
→ Rm2 , defined by (3.18), is the linear operator that piles the

columns of a matrix into a vector.
Taking into account the boundary conditions, a spatially discretized ver-

sion of (4.15) reads (cf. (3.21) and Remark 3.5)

(4.16)
{

(uh)′(t) = c(I ⊗ ∆h
N−N + ∆h

D−N ⊗ I)uh(t) + f h(t), t > 0,
uh(0) = gh,

where I ∈ Rm×m is the identity matrix. This IVP can subsequently be solved,
e.g., by the implicit midpoint rule, resulting in

(4.17)

 uh
l+1 = (I − B)−1

[
(I + B)uh

l + δ f h(tl + δ/2)
]
, l = 0, 1, . . . ,

uh
0 = gh,

where δ > 0 is the time step size and B = 1
2δc(I ⊗ ∆h

N−N + ∆h
D−N ⊗ I) ∈ Rm2

×m2 . In
such a discretization,(

T−1(uh
l )
)

j,k
≈ u( jh, kh, lδ), j, k = 1, . . . ,m, l = 0, 1, . . . ,

with u : Ω × (0,∞)→ R being the exact solution of (4.15).

Remark 4.5. Different homogeneous boundary conditions on the edges of the
unit square can be handled by choosing the appropriate difference matrices
(∆D−D, ∆N−D, ∆D−N, ∆N−N). Nonhomogeneous boundary conditions affect also
the source vector f h.



CHAPTER 5

Numerical solution of the wave equation
(finite difference method)

Let us start by considering a one-(spatial)-dimensional initial and bound-
ary value problem for the wave equation:

(5.1)


utt(x, t) = c2uxx(x, t), t > 0, x ∈ (0, 1),
u(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = f (x), ut(x, 0) = g(x), x ∈ (0, 1),

where c > 0 is the wave ‘speed’. If the initial data f : (0, 1)→ R and g : (0, 1)→
R are regular enough, it can be demonstrated that the problem (5.1) has a
unique solution u : [0, 1] × [0,∞) → R. One possible physical interpretation of
(5.1) is as follows: An ‘ideal string’ with fixed endpoints has initial shape f and
initial velocity g. The solution of (5.1) at time t > 0, i.e. u( · , t), represents the
shape of the string at that time. Unlike for the heat equation, the solution of
(5.1) is composed of infinitely oscillating components. In particular, the ‘energy’
of the solution to (5.1) is constant over time:

Lemma 5.1. Any smooth enough solution u : [0, 1]× [0,∞)→ R of (5.1) satisfies

‖ut( · , t)‖2L2([0,1]) + c2
‖ux( · , t)‖2L2([0,1]) = ‖g‖2L2([0,1]) + c2

‖ f ′‖2L2([0,1])

for all t ≥ 0. The first term on the left can be interpreted as the kinetic energy
and the second term as the potential energy. In particular, the total energy of
the system is constant in time.

PROOF. To begin with, recall the definition of the norm ‖ · ‖L2([0,1]):

‖v‖L2([0,1]) =

(∫ 1

0
|v(x)|2 dx

)1/2

.

By bravely changing the order of differentiation and integration, we deduce
that

(5.2)
d
dt
‖ut( · , t)‖2L2([0,1]) =

d
dt

∫ 1

0
ut(x, t)2 dx = 2

∫ 1

0
ut(x, t)utt(x, t) dx.

Similarly,

d
dt
‖ux( · , t)‖2L2([0,1]) = 2

∫ 1

0
utx(x, t)ux(x, t) dx = 2

∫ 1

0
uxt(x, t)ux(x, t) dx

= 2
[
ut(x, t)ux(x, t)

]x=1

x=0
− 2

∫ 1

0
ut(x, t)uxx(x, t) dx,(5.3)

43
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where the last step follows from integration by parts. Since u(0, · ) and u(1, · )
are identically zero due to the boundary conditions of (5.1), so are their (time)
derivatives, which means that the first term on the right-hand side of (5.3)
vanishes. Thus, combining (5.2) and (5.3) yields

d
dt

(
‖ut( · , t)‖2L2([0,1]) + c2

‖ux( · t)‖2L2([0,1])

)
= 2

∫ 1

0
ut(x, t)

(
utt(x, t) − c2uxx(x, t)

)
dx = 0

because u is a solution of (5.1). In consequence, the energy is constant in time.
In particular, for any t ≥ 0,

‖ut( · , t)‖L2([0,1]) + c2
‖ux( · , t)‖L2([0,1]) = ‖ut( · , 0)‖L2([0,1]) + c2

‖ux( · , 0)‖L2([0,1])

= ‖g‖L2([0,1]) + c2
‖ f ′‖L2([0,1]),

which completes the proof. �

As in the case of the heat equation, it is advisable to first discretize (5.1)
with respect to the spatial variable. We continue to employ the grid points (3.2)
and use the standard difference formula for the second (spatial) derivative to
obtain

utt(x j, t) =
c2

h2

(
u(x j−1, t) − 2u(x j, t) + u(x j+1, t)

)
+ O(h2), j = 1, 2, . . . ,m,

assuming that the exact solution of (5.1) is smooth enough. Taking the ho-
mogeneous Dirichlet boundary conditions of (5.1) into account and loosing the
error term O(h2), this can be written in the form

(5.4)
{

(uh)′′(t) = c2∆h
D−Duh(t), t > 0,

uh(0) = f h, (uh)′(0) = gh,

where ∆h
D−D is the ‘one-dimensional’ difference matrix with Dirichlet boundary

conditions,

(5.5) f h(t) =


f (x1)
f (x2)
...

f (xm)

 , gh =


g(x1)
g(x2)
...

g(xm)


and uh : [0,∞)→ Rm hopefully satisfies uh

j (t) ≈ u(x j, t), j = 1, 2, . . . ,m.
We will consider two alternative ways of discretizing (4.3) with respect to

time.

5.1. Representation as a first order system

Let us introduce an auxiliary function1

wh =

[
uh

(uh)′

]
: [0,∞)→ R2m.

Based on (5.4), it is straightforward to verify that

(wh)′(t) =

[
(uh)′(t)
(uh)′′(t)

]
=

[
0 I

c2∆h
D−D 0

] [
uh(t)

(uh)′(t)

]
, t > 0,

1This is actually a standard trick for reducing higher order IVPs into first order systems.
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where 0 ∈ Rm×m and I ∈ Rm×m are the zero and the identity matrix, respectively.
Denoting

Mh
D−D =

[
0 I

c2∆h
D−D 0

]
∈ R2m×2m,

the spatially discretized problem (5.4) can be written in the alternative form

(5.6)
{

(wh)′(t) = Mh
D−Dwh(t), t > 0,

wh(0) = wh
0,

where wh
0 = [ f h, gh]T

∈ R2m×2m.
The IVP (5.6) can now be solved numerically using one of the methods

introduced in Chapter 2. More precisely, the Euler’s method gives

(5.7) wh
k+1 = wh

k + δMh
D−Dwh

k , k = 0, 1, 2, . . . ,

the implicit Euler’s method results in

(5.8) wh
k+1 = wh

k + δMh
D−Dwh

k+1 ⇐⇒ wh
k+1 = (I − δMh

D−D)−1wh
k , k = 0, 1, 2, . . . ,

and the implicit midpoint rule leads to
(5.9)
wh

k+1 = wh
k + δMh

D−D

(1
2

(wh
k + wh

k+1)
)
⇐⇒ wh

k+1 =
(
I −

1
2
δMh

D−D

)−1(
I +

1
2
δMh

D−D

)
wh

k ,

where k = 0, 1, 2, . . . . Notice, in particular, that the matrices (I − δMh
D−D)−1 and

(I− 1
2δMh

D−D)−1 needed in (5.8) and (5.9), respectively, are well defined for any δ >
0: The to-be-inverted matrices have full sets of distinct nonzero eigenvalues,
cf. Homework 11. In all of the methods (5.7)–(5.9), the main idea is that{

(wh
k) j ≈ u(x j, tk), j = 1, 2, . . . ,m,

(wh
k) j ≈ ut(x j, tk), j = m + 1,m + 2, . . . , 2m,

meaning that one simultaneously obtains estimates for both the solution of
(5.1) and its time derivative.

As implied by Lemma 5.1, the solution of (5.1) is composed of infinitely
lasting oscillations; in particular, it does not include exponentially growing
or decaying components. Any reasonable method for solving (5.1) should have
this same property: The produced numerical solution should retain its ‘energy’,
without ‘exploding’ or ‘vanishing’ as time moves forward. It can be argued that
from this view point the method (5.9) is superior to (5.7) and (5.8) — in fact,
there is no good reason for using (5.7) in practice.

Let us try to be a bit more explicit. Each of the methods (5.7), (5.8) and
(5.9) can be given in the form

(5.10) wh
k = Bkwh

0, k = 0, 1, 2, . . . ,

where B is either I + δMh
D−D, (I − δMh

D−D)−1 or (I − 1
2δMh

D−D)−1(I + 1
2δMh

D−D). All of
these matrices have the same linearly independent eigenvectors v j

∈ C2m, j =
1, 2, . . . , 2m (cf. Homework 11 and 12); however, the corresponding eigenvalues
vary depending on the version of B. Let us denote

V = [v1, v2, . . . , v2m] ∈ C2m×2m.
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Since the eigenvectors are linearly independent, any initial condition wh
0 ∈ R

2m

for (5.6) can be written as their linear combination, that is, there exist a =
[a1, a2, . . . a2m]T

∈ C2m such that

wh
0 =

2m∑
l=1

alvl = Va.

As B has a full set of linearly independent eigenvectors, it is known to be diag-
onalizable, i.e.,

(5.11) B = VΛV−1,

where Λ = diag(λ1, λ2, . . . , λ2m) ∈ C2m×2m is a diagonal matrix carrying the eigen-
values of the considered B ∈ C2m×2m.2 In consequence, the recursion (5.10) can
be written as

(5.12) wh
k = (VΛV−1)kVa = VΛka = V


λk

1
λk

2
. . .

λk
2m

 a =

2m∑
j=1

a jλ
k
jv

j,

where k = 0, 1, 2, . . . . Due to (5.12), it is obvious that the general behavior of the
numerical solution produced by (5.10) as k→∞ depends on the magnitudes of
the eigenvalues λ1, λ2, . . . , λ2m ∈ C.

For the method (5.9), which is based on the implicit midpoint rule, all
eigenvalues of the system matrix B = (I − 1

2δMh
D−D)−1(I + 1

2δMh
D−D) are known

to be of magnitude one (Homework 12), that is, in the formula (5.12) it holds
that |λ j| = 1, j = 1, 2, . . . , 2m, independently of δ > 0. As a consequence, the
numerical solution produced by (5.9) does not approach zero or blow up when
k → ∞, but the corresponding numerical solution wh

k oscillates infinitely as
the coefficients λk

j in (5.12) rotate around the unit circle in the complex plane.
Consequently, the method (5.9) has the desired stability behavior.

In case of (5.7), i.e., when the time discretization is performed by the (ex-
plicit) Euler’s method, all eigenvalues of B = I + δMh

D−D are known to have
magnitude grater than one: |λ j| > 1, j = 1, 2, . . . 2m. Hence,

lim
k→∞
|wh

k | = ∞

for any nonzero a ∈ Cm, i.e. for any nonzero wh
0 = [ f h, gh]T. This blow-up is

particularly severe if δ > 0 is large or the initial data f , g for (5.1) are irregular,
meaning that they contain high spatial frequencies.

Finally, the eigenvalues of the system matrix B = (I − δMh
D−D)−1 for (5.8)

satisfy |λ j| < 1 for all j = 1, 2, . . . , 2m, and it follows trivially from (5.12) that

lim
k→∞

wh
k = 0 ∈ R2m

independently of a ∈ C2m, i.e. independently of the initial data wh
0 ∈ R

2m. The
high spatial frequencies decay particularly fast in the scheme (5.8): the corners
in an angular wave disappear almost instantly.

2Since V is composed of the eigenvectors of B, we have BV = [Bv1, . . . ,Bv2m] = [λ1v1, . . . , λ2mv2m] =
VΛ, and thus (5.11) follows by multiplying from the right by V−1, which exists as the columns of V
are linearly independent.
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To sum up, it is often a good idea to use the implicit midpoint rule for
solving the IVP (5.4) that results from the spatial discretization of (5.1). On
the other hand, utilization of the (explicit) Euler’s method is (almost) never an
appropriate approach.

5.2. Direct discretization of the second time derivative

We continue to consider the spatially discretized wave equation (5.4), but
this time around we will directly discretize the second time derivative. As
usual, we choose a time step size δ > 0 and denote by uh

k ∈ R
m the estimate for

the solution uh : [0,∞)→ Rm of (5.4) at time tk = kδ. By using the standard dif-
ference formula for the second (time!) derivative at tk, we get an approximate
version of (5.4):

1
δ2

(
uh

k+1 − 2uh
k + uh

k−1

)
= c2∆h

D−Duh
k , k = 1, 2, . . . .

Solving for uh
k+1 leads to the recursion

(5.13) uh
k+1 = (2I + δ2c2∆h

D−D)uh
k − uh

k−1, k = 1, 2, . . . .

This is a so-called two-step method: Initializing (5.13) requires the first two
iterates uh

0 and uh
1 — they are needed for computing uh

2 via (5.13) after which
the recursion proceeds naturally.

The first initial condition of (5.4) is an obvious candidate for uh
0, that is, we

set uh
0 = f h

∈ Rm. On the other hand, assuming that the exact solution uh of the
spatially discretized problem (5.4) is smooth enough, we may write a second
order Taylor’s expansion at the origin:

uh(t1) = uh(δ) = uh(0) + δ(uh)′(0) +
δ2

2
(uh)′′(0) + O(δ3)

= uh(0) + δ(uh)′(0) +
δ2c2

2
∆h

D−Duh(0) + O(δ3)

=
(
I +

δ2c2

2
∆h

D−D

)
f h + δgh + O(δ3),(5.14)

where the penultimate step follows from the first equation of (5.4) and the
last one from the corresponding initial conditions. Dropping the error term
O(δ3) from (5.14) gives our choice of uh

1. The complete form of the numerical
algorithm thus reads

(5.15)

 uh
k+1 = (2I + δ2c2∆h

D−D)uh
k − uh

k−1, k = 1, 2, . . . ,

uh
0 = f h, uh

1 =
(
I + δ2c2

2 ∆h
D−D

)
f h + δgh,

where f h, gh
∈ Rm are as in (5.5) and, hopefully, (uh

k) j ≈ u(x j, tk), with j = 1, . . . ,m
and k = 0, 1, . . . .

As for the solution techniques considered in Section 5.1, it is desirable that
the numerical method (5.15) does not produce solutions that contain exponen-
tially increasing or decaying components. We will next investigate what kind
of a condition needs to be imposed on the parameters h = 1/(m + 1) and δ > 0
in order to reach this objective. For simplicity, we assume that gh = 0 ∈ Rm and
f h = v is one of the eigenvectors of the difference matrix ∆h

D−D (cf. Lemma 3.1);
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the resulting condition can straightforwardly be extended for more general ini-
tial value vectors.

Lemma 5.2. Let v ∈ Rm be an eigenvector of ∆h
D−D with the corresponding eigen-

value λ ∈ (− 4
h2 , 0). For the initial conditions f h = v and gh = 0, the numerical

solution produced by (5.15) satisfies uh
k = βkv, where the coefficients βk ∈ R,

k = 0, 1, 2, . . . , satisfy the recursion

(5.16) βk+1 = (2 + δ2c2λ)βk − βk−1, k = 1, 2, . . . .

PROOF. Due to the choice of the initial vectors, (5.15) yields

(5.17) uh
0 = v, uh

1 =
(
I +

1
2
δ2c2∆h

D−D

)
v + δ0 =

(
1 +

1
2
δ2c2λ

)
v,

which shows that β0 = 1 and β1 = 1 + 1
2δ

2c2λ.
Let us then make an induction assumption that uh

k−1 = βk−1v and uh
k = βkv

for some βk−1, βk ∈ R and an arbitrary but fixed k ∈ N; we already know that
this holds for k = 1, and thus the claim follows by induction if we can show that
uh

k+1 = βk+1v with βk+1 given by (5.16). Indeed,

uh
k+1 = (2I + δ2c2∆h

D−D)uh
k − uh

k−1 = βk(2I + δ2c2∆h
D−D)v − βk−1v

= βk(2 + δ2c2λ)v − βk−1v =
(
(2 + δ2c2λ)βk − βk−1

)
v,

which completes the proof. �

We continue to assume the initial conditions f h = v and gh = 0 and note
that the recursion (5.16) can be presented in the ‘matrix form’

ηk+1 = Aηk
⇐⇒ ηk = Ak−1η1, k = 1, 2, . . . ,

where

ηk =

[
βk
βk−1

]
∈ R2 and A =

[
2 + δ2c2λ −1

1 0

]
∈ R2×2.

The corresponding ‘initialization’ is η1 = [1 + 1
2δ

2c2λ, 1]T
∈ R2 given by (5.17). In

a similar manner as in Section 5.1, it can be reasoned that the numerical solu-
tion produced by (5.15) does not decay to zero or blow up — for the considered,
simple initial data — if and only if both eigenvalues of A have magnitude one
(Recall that uh

k = βkv = ηk
1v.)

The eigenvalues of A can be solved from the polynomial equation

det(A − µI) =

∣∣∣∣∣ 2 + δ2c2λ − µ −1
1 −µ

∣∣∣∣∣ = 0,

which is equivalent to

µ2
− αµ + 1 = 0 ⇐⇒ µ± =

1
2

(
α ±
√

α2 − 4
)
,

where α = 2 + δ2c2λ. If |α| > 2, the discriminant α2
− 4 is positive and R 3

µ+ > µ− ∈ R, and thus the absolute value of (at least) one of the two eigenval-
ues must be larger than one.3 In consequence, we must have |α| ≤ 2, whence
√

4 − α2 ∈ R and
µ± =

1
2

(
α ± i

√

4 − α2
)
.

3The case µ+ = 1 and µ− = −1 can be easily excluded.
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In particular,

|µ±|
2 =

1
4

(
α2 + (4 − α2)

)
= 1,

which is good.
The stability condition of the method (5.15) is thus

(5.18) − 2 ≤ α = 2 + δ2c2λ ≤ 2

where λ ∈ (− 4
h2 , 0) is still an (arbitrary) eigenvalue of the difference matrix

∆h
D−D. By virtue of the negativity of λ, only the left-hand inequality of (5.18)

imposes a nontrivial condition on δ > 0:

δ2c2λ > −4 ⇐⇒ δ ≤
2

c
√
−λ

.

In consequence, the ‘worst case’, i.e., the most restrictive condition for δ > 0, is
encountered at the left endpoint of the interval (− 4

h2 , 0) for λ:

δ ≤
h
c
,

which guarantees that the numerical solution produces by (5.15) continues to
oscillate for eternity.

5.3. Generalizations

If the boundary conditions of (5.1) are replaced by some other (homoge-
neous) ones, the only thing that changes in the spatially discretized problem
(5.4) is the difference matrix. As an example, the spatially discretized IVP
corresponding to

utt(x, t) = c2uxx(x, t), t > 0, x ∈ (0, 1),
−ux(0, t) = u(1, t) = 0, t > 0,
u(x, 0) = f (x), ut(x, 0) = g(x), x ∈ (0, 1),

is {
(uh)′′(t) = c2∆h

N−Duh(t), t > 0,
uh(0) = f h, (uh)′(0) = gh,

which can be solved — depending on the prevailing mood — following either
the methodology of Section 5.1 or that Section 5.2 (and substituting ∆h

N−D for
∆h

D−D in all formulas).
The discretization of the wave equation in the two-dimensional unit square

is performed in the same way as for the heat equation in Chapter 4. Indeed,
applying the standard discretization of the two-dimensional Laplace operator
to, e.g.,

(5.19)


utt(x, t) = c2∆u(x, t), t > 0, x ∈ Ω,

∂
∂ν

u(x, t) = 0, t > 0, x ∈ ∂Ω,

u(x, 0) = f (x), ut(x, 0) = g(x), x ∈ Ω,

where Ω = (0, 1) × (0, 1) and ∂
∂νv = ν · ∇v denotes the normal derivative of v,

i.e. the derivative of v in the direction of the unit normal vector ν : ∂Ω→ R2 of
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the boundary ∂Ω, leads to the spatially discretized IVP

(5.20)
{

(uh)′′(t) = c(I ⊗ ∆h
N−N + ∆h

N−N ⊗ I)uh(t), t > 0,
uh(0) = f h, (uh)′(0) = gh,

which can once again be numerically solved by resorting to the ideas of Sec-
tions 5.1 and 5.2. Here, uh : [0,∞) → Rm2 and f h, gh

∈ Rm2 have the interpreta-
tions(

T−1(uh(t))
)

j,k
≈ u( jh, kh, t),

(
T−1( f h)

)
j,k
≈ f ( jh, kh),

(
T−1(gh)

)
j,k
≈ g( jh, kh),

where j, k = 1, 2, . . . ,m and T : Rm×m
→ Rm2 is the linear operator defined by

(3.18), with T−1 : Rm2
→ Rm×m being its inverse map. As in the one-dimensional

case, a change in the boundary conditions of (5.19) can be handled by choosing
the appropriate difference matrices for (5.20).

The considerations of this chapter could also be extended to the case of
nonhomogeneous boundary conditions, but the details are omitted.



CHAPTER 6

Galerkin approximation and finite element
method (in a nutshell)

We start by considering the one-dimensional elliptic boundary value prob-
lem

(6.1)

 −
d

dx

(
κ(x)

d
dx

u(x)
)

+ q(x)u(x) = f (x), x ∈ (0, 1),

u(0) = 0, κ(1)ux(1) + γu(1) = β,

where β, γ ∈ R, κ : [0, 1]→ R is continuously differentiable and q, f : [0, 1]→ R
are continuous. In particular, choosing κ ≡ 1 and q ≡ 0 gives the Laplace equa-
tion with a homogeneous Dirichlet condition on the left and a Robin condition
on the right. We assume that (6.1) has a unique solution and define a (test)
function space V via1

(6.2) V =
{
v ∈ L2([0, 1])

∣∣∣ v(0) = 0, v′ ∈ L2([0, 1])
}
.

In particular, u ∈ V.
Our aim is to write (6.1) in an alternative, integral form. To this end, we

multiply the first equation of (6.1) by an arbitrary v ∈ V and integrate over the
interval [0, 1]:

−

∫ 1

0

d
dx

(
κ(x)

d
dx

u(x)
)
v(x) dx +

∫ 1

0
q(x)u(x)v(x) dx =

∫ 1

0
f (x)v(x) dx.

Via integration by parts this can be transformed into

−

([
κ(x)u′(x)v(x)

]x=1

x=0
−

∫ 1

0
κ(x)u′(x)v′(x) dx

)
+

∫ 1

0
q(x)u(x)v(x) dx =

∫ 1

0
f (x)v(x) dx,

and accounting for the boundary conditions of (6.1) in the substitution term
finally yields
(6.3)∫ 1

0
κ(x)u′(x)v′(x) dx +

∫ 1

0
q(x)u(x)v(x) dx + γu(1)v(1) =

∫ 1

0
f (x)v(x) dx + βv(1),

for all v ∈ V.

Definition 6.1. The equation (6.3) is called the variational formulation (or
version) of (6.1).

Several remarks are in order:
1In fact, V is a so-called Sobolev space.
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• To be quite precise, the derivative v′ appearing in the definition of the
variational space V is the so-called weak (or distributional) derivative
of v, which exists for any v ∈ L2([0, 1]), but does not necessarily belong
to L2([0, 1]) itself. (Be that as it may, you are allowed to just think
about standard derivatives on this course.)

• It follows from the Cauchy–Schwarz inequality for integrals that the
variational equation (6.3) is well defined if it is just assumed that
κ : [0, 1] → R and q : [0, 1] → R are bounded (assuming that the
solution itself belongs to V).

• The homogeneous Dirichlet boundary condition of (6.1) is visible in
the definition of the variational space V, but the Robin condition (or
the Neumann condition if γ = 0) is included implicitly in (6.3). (It is
also possible to treat nonhomogeneous Dirichlet boundary conditions,
but the situation gets slightly more complicated, and thus the details
are omitted.)

• If the derivatives and boundary conditions of (6.1) are interpreted in
a suitable weak manner, the original boundary value problem (6.1) is
actually equivalent to its variational version (6.3).

Summary: The variational problem (6.3) is well defined under more general
assumptions than the (classical) boundary value problem (6.1). However, the
two problems are equivalent if (6.1) is interpreted in an appropriate (weak)
sense.

6.1. Galerkin approximation

Naturally, it is impossible to numerically solve (6.3) as such: The func-
tion space V is infinite-dimensional, which means that the solution u ∈ V does
not usually allow a ‘finite-dimensional parametrization’. Moreover, there are
infinite number of test functions v ∈ V for which (6.3) is required to hold. A nat-
ural way to circumvent these problems related to the infinite-dimensionality
of (6.3) is to search for an approximate solution uh in some finite-dimensional
subspace Vh ⊂ V and to only require that (6.3) holds for all v ∈ Vh. Such uh ∈ Vh
is called the Galerkin approximation of u ∈ V in the subspace Vh.

For simplicity, let us assume that γ = 0 in (6.1), which means that the
variational problem (6.3) takes the form

(6.4)
∫ 1

0
κ(x)u′(x)v′(x) dx +

∫ 1

0
q(x)u(x)v(x) dx =

∫ 1

0
f (x)v(x) dx + βv(1)

for all v ∈ V. Given a finite-dimensional subspace Vh ⊂ V, our aim is to find
uh ∈ Vh that satisfies the same equation as u, that is,

(6.5)
∫ 1

0
κ(x)u′h(x)v′(x) dx +

∫ 1

0
q(x)uh(x)v(x) dx =

∫ 1

0
f (x)v(x) dx + βv(1)

but only for all v ∈ Vh. Since Vh is by assumption finite-dimensional, there
exists a set of linearly independent basis functions for Vh,

v1, v2, . . . , vm ∈ Vh ⊂ V,
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where m ∈ N is the dimension of Vh. This means that any v ∈ Vh can be given
as a (unique) linear combination (“basis”)

(6.6) v =

m∑
k=1

akvk

and (“linear independence”)

(6.7)
m∑

k=1

akvk ≡ 0 ⇐⇒ ak = 0, k = 1, 2, . . . ,m.

Without loss of generality, the solution uh ∈ Vh of (6.5) can thus be searched in
the form

(6.8) uh =

m∑
k=1

akvk.

As both sides of (6.5) are linear with respect to v, it is also easy to check that
the condition “for all v ∈ Vh” can be replaced by the equivalent condition “for
all v j, j = 1, 2, . . . ,m”.

Altogether we have thus reasoned that the problem of finding the Galerkin
approximation for the exact solution u ∈ V of (6.4) in the finite-dimensional
subspace Vh can be (re)formulated as follows: Find a coefficient vector a ∈ Rm

such that∫ 1

0
κ(x)

( m∑
k=1

akv′k(x)
)
v′j(x) dx+

∫ 1

0
q(x)

( m∑
k=1

akvk(x)
)
v j(x) dx =

∫ 1

0
f (x)v j(x) dx+βv j(1)

for all j = 1, 2, . . . ,m. This can be written equivalently as
(6.9)

m∑
k=1

(∫ 1

0
κ(x)v′k(x)v′j(x) dx +

∫ 1

0
q(x)vk(x)v j(x) dx

)
ak =

∫ 1

0
f (x)v j(x) dx + βv j(1),

for j = 1, 2, . . . ,m, which defines a system of m linear equations for the coeffi-
cients a = [a1, a2, . . . , am]T. Like any system of linear equations, also (6.9) can be
given in a matrix form:

(6.10) Aa = d,

where A ∈ Rm×m and d ∈ Rm are defined by

A j,k =

∫ 1

0
κ(x)v′j(x)v′k(x) dx +

∫ 1

0
q(x)v j(x)vk(x) dx, j, k = 1, 2, . . . ,m,

and

d j =

∫ 1

0
f (x)v j(x) dx + βv j(1), j = 1, 2, . . . ,m.

Assuming that the basis functions v1, . . . , vm are known,2 the matrix equation
(6.10) can be formed by means of (numerical) integration, and the Galerkin ap-
proximation is subsequently obtained by solving (6.10) and substituting the so-
lution coefficients in (6.8). Notice that this procedure produces an approximate

2In practice, it is actually typical to first choose the basis function and then define Vh to be the
space of their linear combinations, that is, Vh = span{v1, . . . , vm}.
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solution for (6.1) in a form of a function uh : [0, 1] → R, not just approximate
grid values as does the finite difference method (cf. Chapter 3).

Usually the unique solvability of (6.10) is proved by referring to the unique
solvability of the original infinite dimensional variational problem (6.4), which
is true under suitable assumptions on the coefficients κ and q. However, be-
cause tackling the unique solvability of (6.4) requires certain tools of functional
analysis3, we prove the unique solvability of the matrix equation (6.10) in a
nonstandard way.

Theorem 6.2. Assume that the basis functions v1, . . . , vm : [0, 1] → R are con-
tinuously differentiable. If κ(x) ≥ c > 0 and q(x) ≥ 0 for all x ∈ (0, 1), then (6.10)
has a unique solution a ∈ Rm, that is, the system matrix A is invertible.

PROOF. We will prove that A is positive definite, which is a stronger prop-
erty than invertibility.4 It holds that

aTAa =

m∑
j=1

m∑
k=1

a jA j,kak

=

m∑
j=1

m∑
k=1

a j

(∫ 1

0
κ(x)v′j(x)v′k(x) dx +

∫ 1

0
q(x)v j(x)vk(x) dx

)
ak

=

m∑
j=1

m∑
k=1

(∫ 1

0
κ(x)a jv′j(x)akv′k(x) dx +

∫ 1

0
q(x)a jv j(x)akvk(x) dx

)

=

∫ 1

0
κ(x)

m∑
j=1

m∑
k=1

(
a jv′j(x)akv′k(x)

)
dx +

∫ 1

0
q(x)

m∑
j=1

m∑
k=1

(
a jv j(x)akvk(x)

)
dx

=

∫ 1

0
κ(x)

m∑
j=1

(
a jv′j(x)

) m∑
k=1

(
akv′k(x)

)
dx +

∫ 1

0
q(x)

m∑
j=1

(
a jv j(x)

) m∑
k=1

(akvk(x)) dx

=

∫ 1

0
κ(x)

 m∑
j=1

a jv′j(x)


2

dx +

∫ 1

0
q(x)

 m∑
j=1

a jv j(x)


2

dx ≥ 0

(6.11)

due to the positivity assumptions on κ and q. Furthermore, since κ is strictly
positive, the equality at the last step of (6.11) can hold only if

d
dx

 m∑
j=1

a jv j(x)

 =

m∑
j=1

a jv′j(x) = 0 for all x ∈ [0, 1],

by virtue of the assumed regularity of the basis functions.5 In other words, the
equality can hold in (6.11) only if

(6.12)
m∑

j=1

a jv j(x) = c for all x ∈ [0, 1],

3Riesz representation theorem or Lax–Milgram lemma.
4(a , 0⇒ aTAa > 0) ⇒ (a , 0⇒ Aa , 0)⇔ ∃A−1

5If a continuous function is nonzero at a single point, it must also be nonzero in some nonempty
open neighborhood of that point.
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with some constant c ∈ R. However, as v j ∈ Vh ⊂ V, we have v j(0) = 0 for all
j = 1, 2, . . . ,m, and thus the only possible constant in (6.12) is c = 0. Due to
the assumption that v1, . . . , vm are linearly independent (6.7), this means that
a = 0 ∈ Rm; in particular, the equality holds in (6.11) if only if a = 0 ∈ Rm.

To sum up, we have shown that

aTAa > 0 for all 0 , a ∈ Rm,

which completes the proof. �

6.2. Multidimensional case

Let us demonstrate how to form the variational version of an elliptic bound-
ary value problem in higher dimensions with the help of a simple example: Let
Ω ⊂ Rn be a regular enough domain and assume that the boundary of Ω is di-
vided into two disjoint components: ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = ∅. Our aim is
to deduce the variational formulation of

(6.13) − ∆u = f in Ω, u = 0 on ΓD,
∂u
∂ν

= g on ΓN,

where ∂
∂νu = ν · ∇u denotes the normal derivative of u, i.e. the derivative of u

in the direction of the exterior unit normal vector ν : ∂Ω→ Rn of the boundary
∂Ω.

In this case, the variational space is

V =
{
v ∈ L2(Ω)

∣∣∣ v|ΓD ≡ 0; vx j ∈ L2(Ω), j = 1, . . . ,m
}
.

In particular, observe that the (homogeneous) Dirichlet boundary condition
of (6.13) is once again included in the definition of V. We multiply the first
equation of (6.13) by an arbitrary element of V and integrate over Ω:

−

∫
Ω

∆uv dx =

∫
Ω

f v dx,

According to a Green’s formula (cf. Homework 12, Set 1, Problem 4), this can
be rewritten in the form

(6.14) −

(∫
∂Ω

∂u
∂ν

v ds −
∫

Ω

∇u · ∇v dx
)

=

∫
Ω

f v dx.

Employing the boundary conditions of u and v, the boundary integral term of
(6.14) can manipulated as follows:∫

∂Ω

∂u
∂ν

v ds =

∫
ΓD

∂u
∂ν

v ds +

∫
ΓN

∂u
∂ν

v ds =

∫
ΓD

∂u
∂ν

0 ds +

∫
ΓN

gv ds =

∫
ΓN

gv.

Plugging this expression back in (6.14) and reorganizing the terms, we finally
deduce that the solution of (6.13), i.e. u ∈ V, should also satisfy the variational
equation

(6.15)
∫

Ω

∇u · ∇v dx =

∫
Ω

f v dx +

∫
ΓN

gv ds for all v ∈ V.

This is called the variational formulation of the elliptic boundary value prob-
lem (6.13).

As in the one-dimensional case:
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• The problems (6.13) and (6.15) are equivalent if the former is inter-
preted in the correct weak sense.

• The Galerkin approximation for u ∈ V with respect to a given finite-
dimensional subspace Vh ⊂ V is obtained by (numerically) solving
(6.15) when V is replaced by Vh and the approximate solution uh is
also sought from Vh.

6.3. Finite element method

The feasibility of the Galerkin approximation in practical computations is
affected at least by the following things:

(i) The approximation properties of the chosen subspace Vh ⊂ V. (It can
be shown that the Galerkin approximation uh ∈ Vh gives in a certain
sense the best approximation for the exact solution u ∈ V in Vh.)

(ii) The computational cost of forming the matrix equation (6.10).
(iii) The computational cost of solving the matrix equation (6.10).

Regarding item (i), it would be natural to choose Vh to be some subspace whose
approximation properties are well understood, such as the space of polynomi-
als of a certain order (cf. Section (1.1)). However, this is not necessarily reason-
able from the view point of items (ii) and (iii): Since polynomials take nonzero
values (almost) everywhere, the formation of the system matrix A and the load
vector d requires (numerical) integration over the whole domain for all basis
functions v j, j = 1, 2, . . . ,m, which can be expensive. For this same reason, A
typically becomes full, i.e., most of its elements are nonzero; the supports of
the basis functions v j and vk intersect for all j, k = 1, 2, . . . ,m.

The leading idea of the finite element method is to choose Vh to be the space
spanned by certain piecewise polynomial functions, each of which is supported
only in a small subset of the examined domain. In such a case, the matrix
in (6.10) becomes sparse: Most elements A j,k are zero since the supports of v j
and vk do not intersect for most j , k. In consequence, the formation of A is
computationally inexpensive (cf. (i)) as is solving the equation (6.10) (cf. (ii)).6

On the other hand, the predictability of the accuracy of the Galerkin approxi-
mation remains good (cf. (iii)) because the task of approximating functions by
piecewise polynomials is well studied.

We will demonstrate the basic ideas of the finite element method by con-
sidering a simple one-dimensional model problem:

(6.16)
{
−u′′(x) + u(x) = f (x), x ∈ (0, 1),
−u′(0) = 0, u(1) = 0.

The corresponding (infinite-dimensional) variational space is

(6.17) V =
{
v ∈ L2([0, 1])

∣∣∣ v(1) = 0, v′ ∈ L2([0, 1])
}
,

which takes into account the homogeneous boundary condition of (6.16) at the
right endpoint. As for the problem (6.1), by multiplying the first equation of
(6.16) by an arbitrary v ∈ V, integrating over [0, 1], resorting to partial inte-
gration and, finally, utilizing the boundary conditions satisfied by u and v, one

6In general, it is far cheaper to invert a sparse than a full matrix.
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obtains the variational version of (6.16):

(6.18)
∫ 1

0
u′(x)v′(x) dx +

∫ 1

0
u(x)v(x) dx =

∫ 1

0
f (x)v(x) dx for all v ∈ V.

Let us then define the simplest finite element basis functions. We start by
choosing a set of (possible nonuniform) grid points

0 = x0 < x1 < x2 < · · · < xm < xm+1 = 1,

and introduce the corresponding piecewise linear ‘tent functions’:

(6.19) v j(x) =



x − x j−1

x j − x j−1
, x j−1 ≤ x ≤ x j,

x j+1 − x
x j+1 − x j

, x j ≤ x ≤ x j+1,

0, x < [x j−1, x j+1],

where j = 0, 1, . . . ,m + 1 (and we have set x−1 = 1, xm+2 = 1). Notice that
v j(x j−1) = 0 = v j(x j+1) and the value v(x j) = 1 is uniquely defined, meaning that
the functions v j, j = 0, 1, . . . ,m + 1, are continuous. For 1 ≤ j ≤ m, the function
v j is identically zero on [0, x j−1], on [x j−1, x j] it increases linearly up to the value
1, on [x j, x j+1] it decreases linearly back down to zero, and on [x j+1, 1] it is again
identically zero. The ‘outermost’ basis function form only a ‘half tent’: v0 takes
the value 1 at x = 0, on [0, x1] it decreases linearly down to zero, and it is
identically zero for the rest of the way; vm+1 forms a ‘mirror image’ of v0 at the
other end point of [0, 1]. The (weak) derivative of v j, j = 0, 1, . . . ,m + 1, can also
be given explicitly as a piecewise constant function:7

(6.20) v′j(x) =



1
x j − x j−1

, x j−1 < x < x j,

1
x j − x j+1

, x j < x < x j+1,

0, x < [x j−1, x j+1].

Due to the Dirichlet boundary condition in the definition of V in (6.17),
vm+1 < V and thus it is not included as a basis function of Vh:

Vh = span {v0, v1, . . . , vm} =
{
v ∈ V

∣∣∣ v =

m∑
j=0

c jv j, c j ∈ R
}
,

which is a space of piecewise linear functions with respect to the grid points
x0, x1, . . . , xm. The Galerkin approximation uh

∈ Vh that we are interested in is
defined as the solution of (cf. (6.18))

(6.21)
∫ 1

0
u′h(x)v′(x) dx+

∫ 1

0
uh(x)v(x) dx =

∫ 1

0
f (x)v(x) dx for all v ∈ Vh ⊂ V.

7Try not to be discouraged by the fact that v j is not differentiable in the classical sense at x j−1, x j
and x j+1.
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As suggested by (6.8), we search for uh in the form

uh =

m∑
k=0

a jv j,

which results in a matrix equation for a = [a0, a1, . . . , am]T
∈ Rm+1,

Aa = d,

where A ∈ R(m+1)×(m+1) and d ∈ Rm+1 are defined via

(6.22) A j,k =

∫ 1

0
v′j(x)v′k(x) dx +

∫ 1

0
v j(x)vk(x) dx, j, k = 0, 1, . . . ,m,

and

d j =

∫ 1

0
f (x)v j(x) dx =

∫ x j+1

x j−1

f (x)v j(x) dx, j = 0, 1, . . . ,m,

because v j is supported in [x j−1, x j+1]. Since the basis functions v j, j = 0, 1, . . . ,m,
and their derivatives are known explicitly, the elements of the matrix A can be
written down explicitly with the help of the grid points (a voluntary exercise).
Be that as it may, the most important observation is that

A j,k = 0 if | j − k| > 1

because for | j−k| > 1 the integrands in (6.22) are identically zero due to the ‘nar-
row’ supports of the basis functions. In consequence, A is tridiagonal, which
means that it is not computationally expensive to form or to invert.

The finite element method has a number of advantages compared to the
finite difference method:

• The grid points need not be distributed uniformly, but they can be
adjusted based on the properties of the considered problem.

• The handling/discretization of boundary conditions easier — espe-
cially, in the case of Neumann and Robin conditions.

• The treatment of complicated geometries is more straightforward in
higher spatial dimensions.

• The accuracy of the numerical solution can be increased by increasing
the degree of the piecewise polynomial basis functions. (This can even
be done locally.)

To complete the discussion, let us investigate what happens if we apply
the finite element method with the uniform grid points x j = jh = j/(m + 1),
j = 0, 1, . . . ,m,m + 1 to the one-dimensional model problem of Section 3.1,

(6.23)
{

u′′(x) = f (x), x ∈ (0, 1),
u(0) = 0, u(1) = 0.

In this case the variational space contains two Dirichlet conditions,

(6.24) V =
{
v ∈ L2([0, 1])

∣∣∣ v(0) = v(1) = 0, v′ ∈ L2([0, 1])
}
,

and the variational formulation of (6.23) is to find u ∈ V such that8

(6.25) −

∫ 1

0
u′(x)v′(x) dx =

∫ 1

0
f (x)v(x) dx for all v ∈ V.

8Take note that changing one of the two Dirichlet condition into a homogeneous Neumann condi-
tion would not alter (6.25) but only the variational space V.
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Because of the boundary conditions in (6.24), the first v0 and last vm+1 of the
basis functions (6.19) do not belong to V, and thus we define

Vh = span {v1, v2, . . . , vm} ⊂ V

and look for the solution uh ∈ Vh of the Galerkin problem

−

∫ 1

0
u′h(x)v′(x) dx =

∫ 1

0
f (x)v(x) dx for all v ∈ Vh

in the form uh =
∑m

k=1 a jv j. As above, we end up at the matrix equation

(6.26) Aa = d,

where A ∈ Rm×m and d ∈ Rm are defined via

A j,k = −

∫ 1

0
v′j(x)v′k(x) dx, j, k = 1, 2, . . . ,m,

and

(6.27) d j =

∫ 1

0
f (x)v j(x) dx =

∫ x j+1

x j−1

f (x)v j(x) dx, j = 1, 2, . . . ,m.

Recalling (6.20) and that the grid points x1, x2, . . . , xm are now distributed uni-
formly over [0, 1], it is easy to figure out that

A j,k =



−

∫ x j

x j−1

1
h2 dx −

∫ x j+1

x j

1
h2 dx = − 2

h , k = j,

−

∫ x j

x j−1

1
h(−h) dx = 1

h , k = j − 1,

−

∫ x j+1

x j

1
(−h)h dx = 1

h , k = j + 1,

0, | j − k| > 1.

In other words, A = h∆h
D−D, where ∆h

D−D ∈ R
m×m is the difference matrix with

Dirichlet boundary conditions from Chapter 3, and the equation (6.26) can be
rewritten as

∆h
D−Da =

1
h

d,

where the components of d are given by (6.27).
The lesson: In the case of uniform/symmetric meshes, the finite difference

method and the finite element method often result in similar matrix equations.

THE END
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