## Exercises 26.3

Download CLICAL from

www.teli.stadia.fi/~lounesto/CLICAL.htm

**Problem 1:** Determine the distance d of the point P from the line AB, when A = (2,3,5), B = (1,6,3), P = (5,-1,3).

**Solution**:  $d = |((P - A) \wedge (B - A))/(B - A)|$ .

**Explanation**: The area of a parallelogram, which is twice as big as the triangle ABP, is divided by the line segment AB.

Comment: This formula is applicable in any dimension.

**Problem 2**: Find the distance d between two lines, say AB and CD, when A = (2,5,3), B = (4,1,3), C = (5,2,1), D = (7,3,4).

**Solution**:  $d = |((A - C) \land E)/E|$ , where  $E = (A - B) \land (C - D)$ .

**Explanation**: Determine the length of the orthogonal rejection of A - C outside of the plane  $E = (A - B) \wedge (C - D)$ .

**Comment**: This formula is independent of the surrounding dimension.

**Problem 3**: Find the line of intersection, say  $\ell(t)$ , of the two planes,  $\mathbf{v}_1 \cdot \mathbf{r} + d_1 = 0$  and  $\mathbf{v}_2 \cdot \mathbf{r} + d_2 = 0$ , when  $\mathbf{v}_1 = 3\mathbf{e}_1 + 4\mathbf{e}_2 + 2\mathbf{e}_3$ ,  $d_1 = 2$  and  $\mathbf{v}_2 = 5\mathbf{e}_1 + 3\mathbf{e}_2$ ,  $d_2 = 3$ .

**Solution**:  $\ell(t) = t(\mathbf{v}_1 \wedge \mathbf{v}_2)/\mathbf{e}_{123} + (d_2\mathbf{v}_1 - d_1\mathbf{v}_2)/(\mathbf{v}_1 \wedge \mathbf{v}_2)$ .

Comment: A solution, using the cross product, can be written as

$$\ell(t) = t(\mathbf{v}_1 \times \mathbf{v}_2) + (d_2\mathbf{v}_1 - d_1\mathbf{v}_2) \times (\mathbf{v}_1 \times \mathbf{v}_2)/|\mathbf{v}_1 \times \mathbf{v}_2|^2.$$

For an arbitrary vector  $\mathbf{c}$ ,  $\mathbf{c}/(\mathbf{v}_1 \wedge \mathbf{v}_2)$  is a sum of a 3-vector and a 1-vector, which equals  $\mathbf{c} \times (\mathbf{v}_1 \times \mathbf{v}_2)/|\mathbf{v}_1 \times \mathbf{v}_2|^2$ .

**Explanation**: The quotient A/B is the orthogonal complement of A within B, with magnitude |A|/|B|. Thus,  $(\mathbf{v}_1 \wedge \mathbf{v}_2)/\mathbf{e}_{123}$  is a vector orthogonal to the plane  $\mathbf{v}_1 \wedge \mathbf{v}_2$  within the  $\mathbf{e}_{123}$ -space  $\mathbb{R}^3$ , and  $(d_2\mathbf{v}_1 - d_1\mathbf{v}_2)/(\mathbf{v}_1 \wedge \mathbf{v}_2)$  is the orthogonal complement of the vector  $d_2\mathbf{v}_1 - d_1\mathbf{v}_2$  within the plane  $\mathbf{v}_1 \wedge \mathbf{v}_2$ .

**Comment**: The intersection of two 3-planes in  $\mathbb{R}^4$  is a 2-plane, determined by its bivector  $(\mathbf{v}_1 \wedge \mathbf{v}_2)/\mathbf{e}_{1234}$  and a position vector  $(d_2\mathbf{v}_1 - d_1\mathbf{v}_2)/(\mathbf{v}_1 \wedge \mathbf{v}_2)$ .

**Problem 4**: Find out, if a line segment intersects a plane in 3D-space; if so, at what point does the intersection occur; what is the distance between each endpoint and the intersection. Assume that the plane contains the

points S = (7, -7, 6), T = (1, 3, 2), O = (0, 0, 0) and assume that the line segment has endpoints A = (3, -4, 7) and B = (2, 4, 1).

Solution: While in CLICAL type

```
> dim 3
> S = 7e1-7e2+6e3
> T = e1+3e2+2e3
> P = S^T
P = 28e12 + 8e13 - 32e23
                         [this represents the plane]
> A = 3e1-4e2+7e3
> B = 2e1+4e2+e3
> (A^P)/((A-B)^P)
ans = 0.660
                    [intersection occurs, since this is between 0..1]
> C = A+(B-A)*ans
C = 2.340e1+1.280e2+3.040e3 [the point of intersection]
> abs(A-C)
ans = 6.633
                    [distance of an endpoint from the intersection]
> abs(B-C)
ans = 3.417
                    [distance of an endpoint from the intersection]
```

**Explanation**:  $A \wedge P = A \wedge S \wedge T$  is the oriented volume of the parallelepiped with A, S, T as edges.

**Problem 5**: A person looks at a tetrahedron with corners A, B, C, D from the position P. Is the face ABC with vertices A, B, C visible to the person at P? A = (1, 2, 3), B = (3, 7, 1), C = (2, 0, 0), D = (2, 3, 6), P = (6, 6, 6),

**Solution**: No, for opaque faces or interior. In CLICAL, treat A, B, C, D and P as vectors:

```
> dim 3
> A = e1+2e2+3e3
> B = 3e1+7e2+e3
> C = 2e1
> D = 2e1+3e2+6e3
> P = 6e1+6e2+6e3
```

```
> ((D-A)^(C-A)^(B-A))/((C-A)^(B-A))

ans = 1.742e1-0.367e2+0.825e3

> ((P-A)^(C-A)^(B-A))/((C-A)^(B-A))

ans = 4.397e1-0.925e2+2.083e3
```

Since the two vectors, the first ans and the second ans, point to the same direction, P and D are on the same side of the plane ABC. Thus, the person at P cannot see the face ABC.

**Comment:** The two answers compute the orthogonal rejections (outside of ABC) of the vectors D-A and P-A. The plane ABC is represented by the bivector  $(C-A) \wedge (B-A) = 9\mathbf{e}_{12} + 4\mathbf{e}_{13} + 19\mathbf{e}_{23}$ .

**Problem 6**: Determine the angle ABC for A=(5,9), B=(2,3), C=(8,3).

**Solution**: For complex numbers A, B, C: angle =  $|\text{Im}(\log((A - B)/(C - B)))|$ . In CLICAL, you can treat A,B,C also as vectors:

```
> A = 5e1+9e2
> B = 2e1+3e2
> C = 8e1+3e2
> log((A-B)/(C-B))
ans = 0.122-1.107i
```

Thus, the angle is 1.107.

**Comment:** This method is generalizable to higher dimensions in the form angle =  $|\langle \log((A-B)/(C-B))\rangle_2|$ , where  $\langle W\rangle_2$  gives the bivector part of W (computable in CLICAL as Pu(2, W)).

**Problem 7**: Find a rotation sending a unit vector  $\mathbf{x}$  to the unit vector  $\mathbf{y}$ .

Solution:  $\mathbf{y} = u\mathbf{x}/u$ , where  $u = \sqrt{\mathbf{y}/\mathbf{x}}$ .

**Explanation**: In 2D,  $\mathbf{xr/x}$  is the vector  $\mathbf{r}$  reflected across the line  $\mathbf{x}$ ; and  $(\mathbf{xy})\mathbf{r}/(\mathbf{xy})$  is  $\mathbf{r}$  reflected first across  $\mathbf{y}$  and then across  $\mathbf{x}$ ; this means rotation by twice the angle between  $\mathbf{x}$  and  $\mathbf{y}$ ; thus the desired rotation is completed by  $u = \sqrt{\mathbf{y/x}}$ . Recall that  $1/\mathbf{x} = \mathbf{x}$  and  $\mathbf{xrx} = \mathbf{x}(\mathbf{r} \cdot \mathbf{x} + \mathbf{r} \wedge \mathbf{x}) = \mathbf{x}(\mathbf{x} \cdot \mathbf{r} - \mathbf{x} \wedge \mathbf{r}) = \mathbf{x}(2\mathbf{x} \cdot \mathbf{r} - \mathbf{xr}) = 2(\mathbf{x} \cdot \mathbf{r})\mathbf{x} - (\mathbf{xx})\mathbf{r}$ , which means reflection of  $\mathbf{r}$  across  $\mathbf{x}$ .

**Comment**: The formula is valid in any dimension.

**Problem 8:** What is the distance of two 2-planes in 5D, with no common points? Say, for instance of the planes

A: spanned by  $a_1 = \mathbf{e}_2 + 5\mathbf{e}_5$  and  $a_2 = \mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_4$ 

B: spanned by  $b_1 = 2\mathbf{e}_1 - 2\mathbf{e}_2 - 4\mathbf{e}_3 - 3\mathbf{e}_4$  and  $b_2 = 2\mathbf{e}_2 + 3\mathbf{e}_3 + 4\mathbf{e}_4 + \mathbf{e}_5$ 

where A passes through the origin 0 and B through  $c = \mathbf{e}_1 + 3\mathbf{e}_3 - \mathbf{e}_4 + 7\mathbf{e}_5$ . **Solution**: While in CLICAL, type

> dim 4

input the data, and type

 $> A = a1^a2$ 

A = -e12-5e15+e24-5e25-5e45

 $> B = b1^b2$ 

B = 4e12+6e13+8e14+2e15+2e23-2e24-2e25-7e34-4e35-3e45

compute the component of c perpendicular to both A and B

$$> u = (c^A^B)/(A^B)$$
  
 $u = 1.793e1-0.309e2+2.165e3-1.484e4$ 

where u is the projection of c in that perpendicular direction. The required distance is the length of u,

```
> d = abs(u)
ans = 3.194413
```

**Comment:** The above construction works in any dimension n for computing the distance of two planes. If you want to benefit n=5, you could also compute  $v=(A \wedge B)\mathbf{e}_{12345}=29\mathbf{e}_1-5\mathbf{e}_2+35\mathbf{e}_3-24\mathbf{e}_4+\mathbf{e}_5$ , project c on v to get  $u=(c\cdot v)/v$ ; and d=|u|=3.194.

**Problem 9**: Determine the principal angles between two 2-planes in  $\mathbb{R}^4$ , the planes being the xy-plane and the plane spanned by (1,0,1,0) and (0,1,0,7).

**Comment:** The principal angles between these two planes are  $45^{\circ}$  and  $81.9^{\circ} = \arctan(7)$ . This means that two lines in the two planes are separated by at least  $45^{\circ}$ , and at this minimum, the orthogonal complements of the two lines are separated by  $81.9^{\circ}$ .

Denote the xy-plane  $\mathbf{e}_{12}$  by A and the other plane by

$$B = (\mathbf{e}_1 + \mathbf{e}_3) \wedge (\mathbf{e}_2 + 7\mathbf{e}_4) = \mathbf{e}_{12} + 7\mathbf{e}_{14} - \mathbf{e}_{23} + 7\mathbf{e}_{34}.$$

Then  $B/A = 1 - \mathbf{e}_{13} - 7\mathbf{e}_{24} - 7\mathbf{e}_{1234}$ , computed by observing that AA = -1. Then  $\log(B/A) = \log(10) - (\pi/4)\mathbf{e}_{13} - \arctan(7)\mathbf{e}_{24}$ , as can be verified by exponentiation (and observing that  $\mathbf{e}_{13}\mathbf{e}_{24} = \mathbf{e}_{24}\mathbf{e}_{13}$ ). Thus, the two principal angles,  $\pi/4$  and  $\arctan(7)$ , occur in the pure bivector part of  $\log(B/A)$ ,

$$\mathbf{F} = Pu(2, \log(B/A)) = -(\pi/4)\mathbf{e}_{13} - \arctan(7)\mathbf{e}_{24}.$$

The bivector **F** decomposes into a sum of two simple bivectors,

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$$
,  $\mathbf{F}_1 = -\arctan(7)\mathbf{e}_{24}$ ,  $\mathbf{F}_2 = -(\pi/4)\mathbf{e}_{13}$ .

The principal angles  $f_1$  and  $f_2$  are the magnitudes of  $\mathbf{F}_1$  and  $\mathbf{F}_2$ ,

$$f_1 = |\mathbf{F}_1|, \quad f_2 = |\mathbf{F}_2|.$$

The problem is to find a formula to for the decomposition  $\mathbf{F} = \mathbf{F}_1 + \mathbf{F}_2$ . Solution:  $\mathbf{F}_1 = \mathbf{F} \langle \sqrt{-\mathbf{F}^2} \rangle_0 / \sqrt{-\mathbf{F}^2}$ ,

$$\mathbf{F}_2 = \mathbf{F} \langle \sqrt{-\mathbf{F}^2} \rangle_4 / \sqrt{-\mathbf{F}^2},$$

computable with CLICAL as follows:

```
> dim 4
```

> A = e12

 $> B = (e1+e3)^(e2+7e4)$ 

B = e12+7e14-e23+7e34

> B/A

ans = 1-e13+7e24-7e1234

> F = Pu(2,log(ans))

F = -0.785e13-1.429e24

> F1 = F\*Pu(0, sqrt(-F\*\*2))/sqrt(-F\*\*2)

F1 = -1.429e24

> F2 = F\*Pu(4, sqrt(-F\*\*2))/sqrt(-F\*\*2)

F2 = -0.785e13

Thus, the principal angles are  $f_1 = 1.429$  and  $f_2 = 0.785$ .

**Comment:** The mutual attitude of two lines is determined by the angle between them. The mutual attitude of two k-dimensional subspaces, in n dimensions, is given by k angles, one being the smallest angle between any directions in the two subspaces (another being the smallest angle between the remaining (k-1)-dimensional subspaces, where the first directions have been rejected).

**Problem 10.** Find the distance of the point P = (2, 3, 1) from the line AB, where A = (1, 2, 0), B = (3, 0, -2).

```
> dim 3
> P = 2e1+3e2+e3
> A = e1+2e2
> B = 3e1-2e3
> abs(((P-B)^(A-B))/(A-B))
ans = 1.633 [= sqrt(8/3)]
```

**Problem 11.** Compute  $i/(j + \exp(k\pi/6))$  in quaternions. Hint: Go to the Clifford algebra  $\mathcal{C}\ell_{0,3}$  and use the correspondences  $i = \mathbf{e}_1, \ j = e_2, \ k = e_3$ .

```
> dim 0,3
> q(u) = Re((1-e123)u)+Pu(1,(1-e123)u)
> q(e1/(e2+exp(pi/6 e3)))
ans = 0.433e1+0.250e2-0.5e3 [= sqrt(3)/4 i + 1/4 j - 1/2 k]
```

**Problem 12.** Find matrices of the two isoclinic rotations (= turns each plane the same angle)  $U_L(a) = b$ ,  $U_R(a) = b$  sending a = (16 + 12i + 5j + 4k)/21 to b = (18 + 10i + 4j + k)/21. Compute  $ba^{-1} = (1/441)(432 - 67\mathbf{e}_1 + 2\mathbf{e}_2 - 58\mathbf{e}_3)$ ,  $a^{-1}b = (1/49)(48 - 5\mathbf{e}_1 - 6\mathbf{e}_2 - 6\mathbf{e}_3)$  and the components of  $(ba^{-1})q$ ,  $q(a^{-1}b)$  for  $q = 1, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$  to find the entries of

$$U_L = \frac{1}{441} \begin{pmatrix} 432 & 67 & -2 & 58 \\ -67 & 432 & 58 & 2 \\ 2 & -58 & 432 & 67 \\ -58 & -2 & -67 & 432 \end{pmatrix},$$

$$U_R = \frac{1}{49} \begin{pmatrix} 48 & 5 & 6 & 6 \\ -5 & 48 & -6 & 6 \\ -6 & 6 & 48 & -5 \\ -6 & -6 & 5 & 48 \end{pmatrix}.$$

**Problem 13**. Find the matrix of the simple rotation (= turns only one plane) of  $\mathbb{R}^4$  sending a = (16/21, 12/21, 5/21, 4/21) to b = (18/21, 10/21, 4/21, 1/21).

```
> dim 4
> a = (16e1+12e2+5e3+4e4)/21
> b = (18e1+10e2+4e3+e4)/21
> s = sqrt(b/a)
s = 0.995+0.064e12+0.030e13+0.064e14+0.002e23+0.032e24+0.013e34
[= (873+56e12+26e13+56e14+2e23+28e24+11e34)/sqrt(769986)]
```

Then compute  $S_{ij} = \mathbf{e}_i \cdot (s\mathbf{e}_j/s)$  to find the matrix of the simple rotation:

$$S = \frac{1}{42777} \begin{pmatrix} 42005 & 5252 & 2466 & 5638 \\ -5612 & 42341 & -2 & 2370 \\ -2578 & -390 & 42688 & 899 \\ -5226 & -3062 & -1235 & 42328 \end{pmatrix}.$$

**Problem 14.** Form the matrix of the rotation, which is a composition of the four hyperplane reflections along  $\mathbf{e}_4 - \mathbf{e}_3$ ,  $\mathbf{e}_3 - \mathbf{e}_2$ ,  $\mathbf{e}_2 - \mathbf{e}_1$ ,  $\mathbf{e}_1$ .

```
> a = e1(e2-e1)(e3-e2)(e4-e3)
a = 1-e12+e13-e14-e23+e24-e34+e1234
> a e1/a
ans = e2
> a e2/a
ans = e3
> a e3/a
ans = e4
> a e4/a
ans = -e1
```

Thus, the rotation matrix is [000 - 1, 1000, 0100, 0010]. The rotation turns one plane by angle  $3\pi/4$  and its orthogonal complement by angle  $\pi/4$ , the

latter plane being  $\mathbf{e}_{12} + \sqrt{2}\mathbf{e}_{13} + \mathbf{e}_{14} + \mathbf{e}_{23} + \sqrt{2}\mathbf{e}_{24} + \mathbf{e}_{34}$ . The rotation sends the plane  $\mathbf{e}_{12}$  to  $\mathbf{e}_{23}$ ,  $\mathbf{e}_{23}$  to  $\mathbf{e}_{34}$ ,  $\mathbf{e}_{34}$  to  $\mathbf{e}_{14}$  and  $\mathbf{e}_{14}$  to  $\mathbf{e}_{12}$ .

**Problem 15.** A 2-plane P in  $\mathbb{R}^4$  is called a T-plane of a rotation R, if  $R(P) \cup P$  is a line, the line being called a T-line and the rotation being called a T-rotation. Are all non-isoclinic rotations T-rotations? Are all lines not in the invariant planes T-lines? Are all non-invariant planes T-planes? No (simple rotations of angle  $\pi$  are not), yes (for simple rotations of angle  $\pi$  and isoclinic rotations all lines are in invariant planes) and no. Take any line L outside of the two rotation planes of a non-isoclinic rotation R and consider the plane  $R^{-1}(L) \wedge L$ . Then  $R(R^{-1}(L) \wedge L) = L \wedge R(L)$ . Through a T-line there are exactly two T-planes.

**Problem 16.** Find the intersection of the plane  $A_1A_2A_3$  and the line  $B_1B_2$  when  $A_1 = (3, 4, 5)$ ,  $A_2 = (7, 2, 5)$ ,  $A_3 = (2, 2, 7)$ , and  $B_1 = (4, 4, 7)$ ,  $B_2 = (3, 6, 7)$ .

```
> dim 3
> A = (A1-A3)^(A2-A3)
A = -10e12+8e13-4e23
> k = (((A1-B1)^A)/A)/(((B2-B1)^A)/A)
k = -2
> P = B1+k*(B2-B1)
P = 6e1+7e3
```

or in dimension 4

```
> dim 4
> a1 = A1+e4
> a2 = A2+e4
> a3 = A3+e4
> b1 = B1+e4
> b2 = B2+e4
> shuf(u,v) = ((u/e1234)^(v/e1234))e1234
> q = shuf(a1^a2^a3,b1^b2)
q = 72e1+84e3+12e4
> p = q/(q.e4)
p = 6e1+7e3+e4
```