Exercises 26.3

Download CLICAL from

```
www.teli.stadia.fi/~}lounesto/CLICAL.htm
```

Problem 1: Determine the distance d of the point P from the line $A B$, when $A=(2,3,5), B=(1,6,3), \quad P=(5,-1,3)$.
Solution: $d=|((P-A) \wedge(B-A)) /(B-A)|$.
Explanation: The area of a parallelogram, which is twice as big as the triangle $A B P$, is divided by the line segment $A B$.
Comment: This formula is applicable in any dimension.
Problem 2: Find the distance d between two lines, say $A B$ and $C D$, when $A=(2,5,3), B=(4,1,3), C=(5,2,1), \quad D=(7,3,4)$.
Solution: $d=|((A-C) \wedge E) / E|$, where $E=(A-B) \wedge(C-D)$.
Explanation: Determine the length of the orthogonal rejection of $A-C$ outside of the plane $E=(A-B) \wedge(C-D)$.
Comment: This formula is independent of the surrounding dimension.
Problem 3: Find the line of intersection, say $\ell(t)$, of the two planes, $\mathbf{v}_{1} \cdot \mathbf{r}+d_{1}=0$ and $\mathbf{v}_{2} \cdot \mathbf{r}+d_{2}=0$, when $\mathbf{v}_{1}=3 \mathbf{e}_{1}+4 \mathbf{e}_{2}+2 \mathbf{e}_{3}, d_{1}=2$ and $\mathbf{v}_{2}=5 \mathbf{e}_{1}+3 \mathbf{e}_{2}, d_{2}=3$.
Solution: $\ell(t)=t\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right) / \mathbf{e}_{123}+\left(d_{2} \mathbf{v}_{1}-d_{1} \mathbf{v}_{2}\right) /\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)$.
Comment: A solution, using the cross product, can be written as

$$
\ell(t)=t\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right)+\left(d_{2} \mathbf{v}_{1}-d_{1} \mathbf{v}_{2}\right) \times\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) /\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|^{2} .
$$

For an arbitrary vector $\mathbf{c}, \mathbf{c} /\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)$ is a sum of a 3 -vector and a 1 -vector, which equals $\mathbf{c} \times\left(\mathbf{v}_{1} \times \mathbf{v}_{2}\right) /\left|\mathbf{v}_{1} \times \mathbf{v}_{2}\right|^{2}$.
Explanation: The quotient A / B is the orthogonal complement of A within B , with magnitude $|A| /|B|$. Thus, $\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right) / \mathbf{e}_{123}$ is a vector orthogonal to the plane $\mathbf{v}_{1} \wedge \mathbf{v}_{2}$ within the \mathbf{e}_{123}-space \mathbb{R}^{3}, and $\left(d_{2} \mathbf{v}_{1}-d_{1} \mathbf{v}_{2}\right) /\left(\mathbf{v}_{1} \wedge\right.$ \mathbf{v}_{2}) is the orthogonal complement of the vector $d_{2} \mathbf{v}_{1}-d_{1} \mathbf{v}_{2}$ within the plane $\mathbf{v}_{1} \wedge \mathbf{v}_{2}$.
Comment: The intersection of two 3-planes in \mathbb{R}^{4} is a 2-plane, determined by its bivector $\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right) / \mathbf{e}_{1234}$ and a position vector $\left(d_{2} \mathbf{v}_{1}-d_{1} \mathbf{v}_{2}\right) /\left(\mathbf{v}_{1} \wedge \mathbf{v}_{2}\right)$.
I
Problem 4: Find out, if a line segment intersects a plane in $3 D$-space; if so, at what point does the intersection occur; what is the distance between each endpoint and the intersection. Assume that the plane contains the
points $S=(7,-7,6), T=(1,3,2), O=(0,0,0)$ and assume that the line segment has endpoints $A=(3,-4,7)$ and $B=(2,4,1)$.
Solution: While in CLICAL type

```
> dim 3
> S = 7e1-7e2+6e3
> T = e1+3e2+2e3
> P = S^T
P = 28e12+8e13-32e23 [this represents the plane]
>A = 3e1-4e2+7e3
>B = 2e1+4e2+e3
> (A^P)/((A-B)^P)
ans = 0.660 [intersection occurs, since this is between 0..1]
> C = A+(B-A)*ans
C = 2.340e1+1.280e2+3.040e3 [the point of intersection]
> abs(A-C)
ans = 6.633 [distance of an endpoint from the intersection]
> abs(B-C)
ans = 3.417 [distance of an endpoint from the intersection]
```

Explanation: $A \wedge P=A \wedge S \wedge T$ is the oriented volume of the parallelepiped with A, S, T as edges.

Problem 5: A person looks at a tetrahedron with corners A, B, C, D from the position P. Is the face $A B C$ with vertices A, B, C visible to the person at $P ? \quad A=(1,2,3), \quad B=(3,7,1), \quad C=(2,0,0), \quad D=(2,3,6)$, $P=(6,6,6)$,
Solution: No, for opaque faces or interior. In CLICAL, treat A, B, C, D and P as vectors:

```
> dim 3
> A = e1+2e2+3e3
> B = 3e1+7e2+e3
> C = 2e1
> D = 2e1+3e2+6e3
> P = 6e1+6e2+6e3
```

```
> ((D-A)^(C-A)^(B-A))/((C-A)^(B-A))
ans = 1.742e1-0.367e2+0.825e3
> ((P-A)^(C-A)^(B-A))/((C-A)^(B-A))
ans = 4.397e1-0.925e2+2.083e3
```

Since the two vectors, the first ans and the second ans, point to the same direction, P and D are on the same side of the plane $A B C$. Thus, the person at P cannot see the face $A B C$.
Comment: The two answers compute the orthogonal rejections (outside of $A B C$) of the vectors $D-A$ and $P-A$. The plane $A B C$ is represented by the bivector $(C-A) \wedge(B-A)=9 \mathbf{e}_{12}+4 \mathbf{e}_{13}+19 \mathbf{e}_{23}$.

Problem 6: Determine the angle $A B C$ for $A=(5,9), B=(2,3)$, $C=(8,3)$.
Solution: For complex numbers A, B, C : angle $=\mid \operatorname{Im}(\log ((A-B) /(C-$ $B))$)|. In CLICAL, you can treat $\mathrm{A}, \mathrm{B}, \mathrm{C}$ also as vectors:

```
> A = 5e1+9e2
>B = 2e1+3e2
> C = 8e1+3e2
> log((A-B)/(C-B))
ans = 0.122-1.107i
```

Thus, the angle is 1.107 .
Comment: This method is generalizable to higher dimensions in the form angle $=\left|\langle\log ((A-B) /(C-B))\rangle_{2}\right|$, where $\langle W\rangle_{2}$ gives the bivector part of W (computable in CLICAL as $\mathrm{Pu}(2, W)$).

Problem 7: Find a rotation sending a unit vector \mathbf{x} to the unit vector y .
Solution: $\mathbf{y}=u \mathbf{x} / u$, where $u=\sqrt{\mathbf{y} / \mathbf{x}}$.
Explanation: In $2 D, \mathbf{x r} / \mathbf{x}$ is the vector \mathbf{r} reflected across the line \mathbf{x}; and $(\mathbf{x y}) \mathbf{r} /(\mathbf{x y})$ is \mathbf{r} reflected first across \mathbf{y} and then across \mathbf{x}; this means rotation by twice the angle between \mathbf{x} and \mathbf{y}; thus the desired rotation is completed by $u=\sqrt{\mathrm{y} / \mathrm{x}}$. Recall that $1 / \mathrm{x}=\mathrm{x}$ and $\mathrm{xrx}=\mathrm{x}(\mathbf{r} \cdot \mathrm{x}+\mathbf{r} \wedge \mathrm{x})=$ $\mathbf{x}(\mathbf{x} \cdot \mathbf{r}-\mathbf{x} \wedge \mathbf{r})=\mathbf{x}(2 \mathbf{x} \cdot \mathbf{r}-\mathbf{x r})=2(\mathbf{x} \cdot \mathbf{r}) \mathbf{x}-(\mathbf{x x}) \mathbf{r}$, which means reflection of \mathbf{r} across \mathbf{x}.
Comment: The formula is valid in any dimension.

Problem 8: What is the distance of two 2-planes in $5 D$, with no common points? Say, for instance of the planes

$$
\begin{array}{ll}
A: & \text { spanned by } a_{1}=\mathbf{e}_{2}+5 \mathbf{e}_{5} \quad \text { and } \quad a_{2}=\mathbf{e}_{1}+\mathbf{e}_{2}+\mathbf{e}_{4} \\
B: & \text { spanned by } b_{1}=2 \mathbf{e}_{1}-2 \mathbf{e}_{2}-4 \mathbf{e}_{3}-3 \mathbf{e}_{4} \quad \text { and } \quad b_{2}=2 \mathbf{e}_{2}+3 \mathbf{e}_{3}+4 \mathbf{e}_{4}+\mathbf{e}_{5}
\end{array}
$$

where A passes through the origin 0 and B through $c=\mathbf{e}_{1}+3 \mathbf{e}_{3}-\mathbf{e}_{4}+7 \mathbf{e}_{5}$.
Solution: While in CLICAL, type

```
> dim 4
input the data, and type
> A = a1^a2
A = -e12-5e15+e24-5e25-5e45
> B = b1^b2
B=4e12+6e13+8e14+2e15+2e23-2e24-2e25-7e34-4e35-3e45
compute the component of c perpendicular to both A and B
> u = (c^A^B)/(A^B)
u = 1.793e1-0.309e2+2.165e3-1.484e4
where u is the projection of c in that perpendicular direction.
The required distance is the length of u,
> d = abs(u)
ans = 3.194413
```

Comment: The above construction works in any dimension n for computing the distance of two planes. If you want to benefit $n=5$, you could also compute $v=(A \wedge B) \mathbf{e}_{12345}=29 \mathbf{e}_{1}-5 \mathbf{e}_{2}+35 \mathbf{e}_{3}-24 \mathbf{e}_{4}+\mathbf{e}_{5}$, project c on v to get $u=(c \cdot v) / v$; and $d=|u|=3.194$.

Problem 9: Determine the principal angles between two 2-planes in \mathbb{R}^{4}, the planes being the $x y$-plane and the plane spanned by ($1,0,1,0$) and ($0,1,0,7$).
Comment: The principal angles between these two planes are 45° and $81.9^{\circ}=\arctan (7)$. This means that two lines in the two planes are separated by at least 45°, and at this minimum, the orthogonal complements of the two lines are separated by 81.9°.

Denote the $x y$-plane \mathbf{e}_{12} by A and the other plane by

$$
B=\left(\mathbf{e}_{1}+\mathbf{e}_{3}\right) \wedge\left(\mathbf{e}_{2}+7 \mathbf{e}_{4}\right)=\mathbf{e}_{12}+7 \mathbf{e}_{14}-\mathbf{e}_{23}+7 \mathbf{e}_{34}
$$

Then $B / A=1-\mathbf{e}_{13}-7 \mathbf{e}_{24}-7 \mathbf{e}_{1234}$, computed by observing that $A A=-1$. Then $\log (B / A)=\log (10)-(\pi / 4) \mathbf{e}_{13}-\arctan (7) \mathbf{e}_{24}$, as can be verified by exponentiation (and observing that $\mathbf{e}_{13} \mathbf{e}_{24}=\mathbf{e}_{24} \mathbf{e}_{13}$). Thus, the two principal angles, $\pi / 4$ and $\arctan (7)$, occur in the pure bivector part of $\log (B / A)$,

$$
\mathbf{F}=\mathrm{Pu}(2, \log (B / A))=-(\pi / 4) \mathbf{e}_{13}-\arctan (7) \mathbf{e}_{24}
$$

The bivector \mathbf{F} decomposes into a sum of two simple bivectors,

$$
\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}, \quad \mathbf{F}_{1}=-\arctan (7) \mathbf{e}_{24}, \mathbf{F}_{2}=-(\pi / 4) \mathbf{e}_{13}
$$

The principal angles f_{1} and f_{2} are the magnitudes of \mathbf{F}_{1} and \mathbf{F}_{2},

$$
f_{1}=\left|\mathbf{F}_{1}\right|, \quad f_{2}=\left|\mathbf{F}_{2}\right|
$$

The problem is to find a formula to for the decomposition $\mathbf{F}=\mathbf{F}_{1}+\mathbf{F}_{2}$.
Solution: $\mathbf{F}_{1}=\mathbf{F}\left\langle\sqrt{-\mathbf{F}^{2}}\right\rangle_{0} / \sqrt{-\mathbf{F}^{2}}$,

$$
\mathbf{F}_{2}=\mathbf{F}\left\langle\sqrt{-\mathbf{F}^{2}}\right\rangle_{4} / \sqrt{-\mathbf{F}^{2}},
$$

computable with CLICAL as follows:

```
> dim 4
>A = e12
>B=(e1+e3)^(e2+7e4)
B = e12+7e14-e23+7e34
```

> B/A
ans = 1-e13+7e24-7e1234
> $\mathrm{F}=\mathrm{Pu}(2, \log ($ ans $))$
$F=-0.785 \mathrm{e} 13-1.429 \mathrm{e} 24$
> $\mathrm{F} 1=\mathrm{F} * \mathrm{Pu}(0, \operatorname{sqrt}(-\mathrm{F} * * 2)) / \operatorname{sqrt}(-\mathrm{F} * * 2)$
F1 $=-1.429 \mathrm{e} 24$
$>\mathrm{F} 2=\mathrm{F} * \mathrm{Pu}(4, \operatorname{sqrt}(-\mathrm{F} * * 2)) / \operatorname{sqrt}(-\mathrm{F} * * 2)$
$\mathrm{F} 2=-0.785 \mathrm{e} 13$

Thus, the principal angles are $f_{1}=1.429$ and $f_{2}=0.785$.
Comment: The mutual attitude of two lines is determined by the angle between them. The mutual attitude of two k-dimensional subspaces, in n dimensions, is given by k angles, one being the smallest angle between any directions in the two subspaces (another being the smallest angle between the remaining $(k-1)$-dimensional subspaces, where the first directions have been rejected).

Problem 10. Find the distance of the point $P=(2,3,1)$ from the line $A B$, where $A=(1,2,0), B=(3,0,-2)$.

```
 dim 3
> P = 2e1+3e2+e3
>A = e1+2e2
> B = 3e1-2e3
> abs(((P-B)^(A-B))/(A-B))
ans = 1.633 [= sqrt(8/3)]
```

Problem 11. Compute $i /(j+\exp (k \pi / 6))$ in quaternions. Hint: Go to the Clifford algebra $\mathcal{C} \ell_{0,3}$ and use the correspondences $i=\mathbf{e}_{1}, \quad j=e_{2}$, $k=e_{3}$.

```
> dim 0,3
>q(u) = Re((1-e123)u)+Pu(1,(1-e123)u)
> q(e1/(e2+exp(pi/6 e3)))
ans = 0.433e1+0.250e2-0.5e3 [= sqrt(3)/4 i + 1/4 j - 1/2 k]
```

Problem 12. Find matrices of the two isoclinic rotations ($=$ turns each plane the same angle) $U_{L}(a)=b, U_{R}(a)=b$ sending $a=(16+12 i+5 j+$ $4 k) / 21$ to $b=(18+10 i+4 j+k) / 21$. Compute $b a^{-1}=(1 / 441)\left(432-67 \mathbf{e}_{1}+\right.$ $\left.2 \mathbf{e}_{2}-58 \mathbf{e}_{3}\right), a^{-1} b=(1 / 49)\left(48-5 \mathbf{e}_{1}-6 \mathbf{e}_{2}-6 \mathbf{e}_{3}\right)$ and the components of $\left(b a^{-1}\right) q, q\left(a^{-1} b\right)$ for $q=1, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ to find the entries of

$$
U_{L}=\frac{1}{441}\left(\begin{array}{cccc}
432 & 67 & -2 & 58 \\
-67 & 432 & 58 & 2 \\
2 & -58 & 432 & 67 \\
-58 & -2 & -67 & 432
\end{array}\right)
$$

$$
U_{R}=\frac{1}{49}\left(\begin{array}{cccc}
48 & 5 & 6 & 6 \\
-5 & 48 & -6 & 6 \\
-6 & 6 & 48 & -5 \\
-6 & -6 & 5 & 48
\end{array}\right)
$$

Problem 13. Find the matrix of the simple rotation ($=$ turns only one plane) of \mathbb{R}^{4} sending $a=(16 / 21,12 / 21,5 / 21,4 / 21)$ to $b=(18 / 21,10 / 21,4 / 21,1 / 21)$.

```
> dim 4
> a = (16e1+12e2+5e3+4e4)/21
> b = (18e1+10e2+4e3+e4)/21
> s = sqrt(b/a)
s = 0.995+0.064e12+0.030e13+0.064e14+0.002e23+0.032e24+0.013e34
    [=(873+56e12+26e13+56e14+2e23+28e24+11e34)/sqrt(769986)]
```

Then compute $S_{i j}=\mathbf{e}_{i} \cdot\left(s \mathbf{e}_{j} / s\right)$ to find the matrix of the simple rotation:

$$
S=\frac{1}{42777}\left(\begin{array}{cccc}
42005 & 5252 & 2466 & 5638 \\
-5612 & 42341 & -2 & 2370 \\
-2578 & -390 & 42688 & 899 \\
-5226 & -3062 & -1235 & 42328
\end{array}\right)
$$

Problem 14. Form the matrix of the rotation, which is a composition of the four hyperplane reflections along $\mathbf{e}_{4}-\mathbf{e}_{3}, \mathbf{e}_{3}-\mathbf{e}_{2}, \mathbf{e}_{2}-\mathbf{e}_{1}, \mathbf{e}_{1}$.

```
> a = e1(e2-e1)(e3-e2) (e4-e3)
a = 1-e12+e13-e14-e23+e24-e34+e1234
> a e1/a
ans = e2
> a e2/a
ans = e3
> a e3/a
ans = e4
> a e4/a
ans = -e1
```

Thus, the rotation matrix is $[000-1,1000,0100,0010]$. The rotation turns one plane by angle $3 \pi / 4$ and its orthogonal complement by angle $\pi / 4$, the
latter plane being $\mathbf{e}_{12}+\sqrt{2} \mathbf{e}_{13}+\mathbf{e}_{14}+\mathbf{e}_{23}+\sqrt{2} \mathbf{e}_{24}+\mathbf{e}_{34}$. The rotation sends the plane \mathbf{e}_{12} to $\mathbf{e}_{23}, \mathbf{e}_{23}$ to $\mathbf{e}_{34}, \mathbf{e}_{34}$ to \mathbf{e}_{14} and \mathbf{e}_{14} to \mathbf{e}_{12}.

Problem 15. A 2-plane P in \mathbb{R}^{4} is called a T-plane of a rotation R, if $R(P) \cup P$ is a line, the line being called a T-line and the rotation being called a T-rotation. Are all non-isoclinic rotations T-rotations? Are all lines not in the invariant planes T-lines? Are all non-invariant planes T planes? No (simple rotations of angle π are not), yes (for simple rotations of angle π and isoclinic rotations all lines are in invariant planes) and no. Take any line L outside of the two rotation planes of a non-isoclinic rotation R and consider the plane $R^{-1}(L) \wedge L$. Then $R\left(R^{-1}(L) \wedge L\right)=L \wedge R(L)$. Through a T-line there are exactly two T-planes.

Problem 16. Find the intersection of the plane $A_{1} A_{2} A_{3}$ and the line $B_{1} B_{2}$ when $A_{1}=(3,4,5), A_{2}=(7,2,5), A_{3}=(2,2,7)$, and $B_{1}=(4,4,7)$, $B_{2}=(3,6,7)$.

```
> dim 3
> A = (A1-A3) ^(A2-A3)
A = -10e12+8e13-4e23
> k = (((A1-B1) ^A)/A)/(((B2-B1) ^A)/A)
k = -2
> P = B1+k*(B2-B1)
P = 6e1+7e3
```

or in dimension 4

```
> dim 4
>a1 = A1+e4
> a2 = A2+e4
> a3 = A3+e4
> b1 = B1+e4
> b2 = B2+e4
> shuf(u,v) = ((u/e1234)^(v/e1234))e1234
> q = shuf(a1^a2^a3,b1^b2)
q = 72e1+84e3+12e4
> p = q/(q.e4)
p = 6e1+7e3+e4
```

