
A Measurement Study on Achieving Imperceptible
Latency in Mobile Cloud Gaming

Teemu Kämäräinen
Aalto University

Finland
teemu.kamarainen@aalto.fi

Matti Siekkinen
Aalto University

Finland
matti.siekkinen@aalto.fi

Antti Ylä-Jääski
Aalto University

Finland
antti.yla-jaaski@aalto.fi

Wenxiao Zhang
The Hong Kong University of

Science and Technology
Hong Kong

wzhangal@stu.ust.hk

Pan Hui
The Hong Kong University of

Science and Technology
Hong Kong

panhui@cse.ust.hk

ABSTRACT
Cloud gaming is a relatively new paradigm in which the
game is rendered in the cloud and is streamed to an end-
user device through a thin client. Latency is a key challenge
for cloud gaming. In order to optimize the end-to-end la-
tency, it is first necessary to understand how the end-to-end
latency builds up from the mobile device to the cloud gam-
ing server. In this paper we dissect the delays occurring in
the mobile device and measure access delays in various net-
works and network conditions. We also perform a Europe-
wide latency measurement study to find the optimal server
locations and see how the number of server locations affects
the network delay. The results are compared to limits found
for perceivable delays in recent human-computer interaction
studies. We show that the limits can be achieved only with
the latest mobile devices with specific control methods. In
addition, we study the expected latency reduction by near
future technological development and show that its poten-
tial impact is bigger on the end-to-end latency than that of
replication of the service and server placement optimization.

CCS Concepts
•Information systems → Multimedia streaming;
•Networks → Network measurement; Cloud
computing;

Keywords
Cloud gaming; latency; network measurements

1. INTRODUCTION
Cloud gaming is a recently emerged application that com-

bines the concepts of cloud computing and online gaming. It

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MMSys ’17 June 20–23, 2017, Taipei, Taiwan
c© 2017 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

allows the end-user device to offload computation, storage,
and the tasks of graphic rendering to the cloud. This re-
duces hardware requirements for the end-user device, as only
a thin client that takes care of video decoding and user in-
teraction is running on the device. The resulting client-side
resource requirements are constant regardless of the game
being played.

The main challenge for cloud gaming is latency. The user
experience when playing certain games is very sensitive to la-
tency. These games become unplayable if the delay between
the action, such as tapping a control key to steer a car left,
and response to that action, i.e., observing the car to turn
left on display, becomes too high. The latency challenge is
amplified with wireless mobile networks which typically add
a longer part to the end-to-end latency compared to fixed
wired access network technologies. To cope with the latency
challenge, the cloud gaming system must be distributed so
that the gaming servers can be brought closer to the user
when necessary.

This paper is our first attempt to answer the following
question: “Is it possible to implement and deploy a mo-
bile cloud gaming service with which the user cannot per-
ceive the latency imposed by remote computation, and if so,
how?” The fact that humans cannot perceive very short la-
tencies motivates our study. In particular, earlier work on
human-computer interaction has characterized perceivable
latencies in direct and indirect interaction by human with
a touch screen [11]. In this paper, we study the achievabil-
ity of latencies below these perceivable latency bounds in
mobile cloud gaming using currently available technologies.
We also do some projections based on technological advances
expected in the near future.

We first show a set of measurements to characterize the
range of expected latencies in mobile cloud gaming systems.
We then study the effect of server deployment in the case of
Europe-wide deployment of a cloud gaming service where we
leverage measurements with a wide range of possible client
and server locations from Planetlab[28] and Speedtest[34].
Specifically, we study the expected latencies observed by
clients in different geographic locations when distributing
servers in different number of optimally or near optimally
chosen locations.

The problem of optimal server placement given constraints
and an optimization target, such as cost or latency mini-

mization, has been studied earlier with peer-to-peer systems
and content distribution networks[36, 29]. Gaming imposes
specific latency constraints and workload and, consequently,
a few papers on cloud gaming server placement also exist[14,
35]. To the best of our knowledge, our work is the first of
its kind in two ways: 1) We focus specifically on mobile
cloud gaming and 2) we study the achievability of imper-
ceptible latency in such a system. Hence, our work differs
from previous studies that have used latency limits whose
effect on user experience have been characterized through
Mean Opinion Score (MOS) scale ratings in subjective ex-
periments and that do not correspond to true end-to-end
latencies in vast majority of cases. We argue that impercep-
tible end-to-end latency is the holy grail that such systems
should strive for and, therefore, we feel that this study is
timely and important. In addition, while previous work fo-
cuses on optimizing existing cloud gaming systems and is
constrained by their server and client locations, our study is
not tied to any deployed gaming system.

In summary, the contributions of this paper are the fol-
lowing:

• We dissect the end-to-end latency in mobile cloud gam-
ing and study the impact of different factors on the
total delay.

• We show that it is possible in mobile cloud gaming
systems to achieve latencies so short that users cannot
perceive them with current technologies. However, it
requires distribution of the game servers, latest mobile
device models, and specific control methods. Specifi-
cally, the use of touch screen adds too much latency
with currently available mobile devices and, thus, pro-
hibits reaching short enough latencies.

• We quantify the relative impact of different mobile de-
vice, server, and network induced delays and show the
impact of server placement optimization for the end-
to-end latency in a Europe-wide case study. We also
make projections on the impact of near future techno-
logical developments on the latency.

2. BACKGROUND

2.1 Mobile Cloud Gaming
Moving games into the cloud enables users to play compute-

intensive games on mobile devices like smartphones and tablets,
as heavy processing is offloaded to the cloud. A dozen or so
companies are offering varying cloud gaming solutions at
the moment, while many trials have ended in bankruptcy
or discontinuation of the service. Nvidia’s Geforce Now and
Sony’s Playstation Now are some of the biggest cloud gaming
providers at the moment with Geforce Now having support
for their own mobile device although their current focus has
been shifted for console gaming.

So far the most common usage of cloud computing in gam-
ing is to deliver the game software and to manage the user
data. Meanwhile, a lot of game providers have already been
running multi-player game servers on the cloud. These game
servers can handle the state changes of the connected game
clients, while leaving the graphic rendering on the game
clients. Alternatively, the game servers can take care of
graphic rendering as well to keep the game clients as thin as
possible, which is the focus of our work too.

Figure 1: Framework of a cloud gaming platform
(adapted from [32]).

The main advantages of moving games to the cloud are
the far less strict requirements for the client hardware and
the possibility to remove almost all architectural limitations.
Potentially millions of new devices such as tablets and phones
could gain access to games, which would run normally only
on high-end desktop PCs. Users would not need to upgrade
frequently their devices to support the latest games anymore
and possibly enable the users to play more games thanks to
the lowered hardware/software costs. As discussed in [33]
and [15], cloud gaming also has potential to reduce power
consumption and production costs and increase net revenues
for the developers by not having to develop for several plat-
forms at the same time.

Figure 1 presents the framework of a typical cloud gaming
platform. The game is entirely executed and rendered by
the cloud gaming server running in the cloud. There are
two data flows between the cloud gaming server and the
client. The video data flow carries rendered, captured, and
encoded images from the server to the game clients which
are then decoded and played back to the user. The control
flow is used by the clients to capture user’s control input
and convey it to the cloud gaming server which replays the
input on the host machine.

Similar to the work presented in [15], we term the time
difference between a user’s command input and the corre-
sponding in-game action appearing on the screen as the re-
sponse delay (RD). It is a key factor that affects the quality
of user experience while playing cloud-based games. Fol-
lowing the terminology presented in [8], it can be further
divided into three components: processing delay (PD), net-
work delay (ND) and playout delay (OD).

The processing delay is the time interval between the
server receiving a command from the user and submitting
the corresponding video frame to the user. Network delay is
the round-trip time (RTT) between the thin client and the
cloud gaming server and is equal to the time it takes for a
command to traverse through the network and a frame to
come back to the client. Playout delay is the time it takes
for the client to display a frame to the user. It includes
frame reception, frame decoding and displaying the decoded
frame on the display of the mobile device. In addition, the
pipeline includes also control delay (CD), which means the
time difference between the user initiating a command (e.g.
touching the screen, pressing a button on a gamepad) and
the device registering the input. Playout delay and control
delay form the device delay, which together with network
and processing delays create the end-to-end pipeline.

2.2 Related Work
While deep understanding of the impact of latency on user

experience is still an open problem, many discoveries have
been made about human perception of latency with mobile
technology. Deber et al. recently characterized the Just No-
ticeable Difference (JND) threshold to a reference latency of
0.98 ms, i.e. virtually zero latency, through psychophysical
experiments based on the adaptive staircase procedure[11].
They also investigated the impact of additional latency on
task performance in direct and indirect user interaction with
a touch device. They found that the mean JND threshold
for a simple tapping task is 69 ms and 96 ms for direct and
indirect touch, respectively. The threshold is substantially
shorter when performing a dragging task. Lee et al. stud-
ied error rates in pointing tasks where a target is about to
appear within a limited time window for selection[21].

The impact of network latency on the quality of gaming
experience has been discussed in several studies. For exam-
ple, Pantel et al. [27] proposed that the delay should not be
longer than 100 ms based on the measurement of two racing
games. On the other hand, Lee et al. [24] show that the
impact of latency on quality of experience depends on the
the game type because there are notable differences between
the amount of screen changes in response to a player’s com-
mands. However these studies examined only the impact
of network delay on traditional multiplayer servers where
the delay can often be compensated. Jarschel et al. have
researched the perceived QoE of users in different network
conditions specifically in cloud gaming [18]. They concluded
that in fast-paced games the delay component becomes the
dominant metric affecting the QoE. Unfortunately, the base
delay of the system was not measured in the study. This is
why the latency limits found cannot be directly used to set
boundaries to acceptable end-to-end latencies.

Deploying cloud services in a geographically distributed
manner has also been discussed by for example Zhang et
al.[37], who focused on the optimization algorithms that de-
termine where to deploy the services with minimum cost and
potentially optimal quality of service. In addition Hong et
al. have studied the efficient consolidation of multiple cloud
gaming servers on a physical machine[13]. In this paper we
show how the network latency is affected as more server lo-
cations are added to the system. Satyanarayanan et al. have
presented Cloudlets that offer computing power for mobile
clients within one-hop latency[31]. The solution proposed
by Choy et al. is to use the existing CDN network to offload
computation from the mobile device[9]. Processing delay on
the server side as well as on the client side occur both in
the software and hardware. Jain et al. focus on balancing
the network and the computational delay with accuracy in
mobile AR[17]. Lee et al. developed a system to specula-
tively execute different possible scenarios of a cloud game
in order to mask latency[22]. This however requires sup-
port from the game engine and results to more overhead in
the transmission. Boos et al. applied the same approach to
VR[4]. Their system aggressively precomputes and caches
all possible images that a VR user might encounter in order
to achieve low latency and energy consumption.

Concerning latency measurements, we performed a dis-
section of the end-to-end latency particularly on the mobile
device side in our earlier work [2]. Related studies have
mainly used timing hooks injected into the code or a high-
speed camera[7, 16, 6]. Our method includes a modified and

Figure 2: The complete end-to-end response delay
pipeline in cloud gaming with the used terminology.

extended version of the WALT Latency Timer [20] together
with code injections allowing a full dissection of the delay
pipeline. Similar measurement setups have been previously
utilized successfully in measuring mobile phone display re-
sponsiveness[3, 10]. Our approach can also measure gyro,
gamepad and Bluetooth delay on top of the traditional touch
latency measurements. A predictive approach has also been
proposed by Cattan et al. but it requires separate calibra-
tion[5]. We summarize the latency measurement results in
Section 3 and use the found base latencies in evaluating the
present and future potential of providing a completely un-
noticable delay in the case of mobile cloud gaming. However,
the latency study for the wired segment portion of the end-
to-end latency can also be utilized in designing a non-mobile
cloud gaming service.

3. LATENCY MEASUREMENTS
In order to understand whether imperceptible latency is

achievable, we first need to understand the end-to-end la-
tency resulting from the current technology used in mobile
cloud gaming. The complete end-to-end pipeline of the to-
tal delay together with the used terminology is presented in
Figure 2. In this section we summarize our mobile device la-
tency measurements from our previous work[2], measure the
effect of different access networks and network conditions on
the latency, and confirm server delay results from previous
studies with our own experiments. In Section 4, we continue
the analysis by performing a server placement optimization
study based on the wired segment part of the network delay.

3.1 Mobile device
For analyzing the mobile device induced delays we run

a number of test cases in which we vary parameters listed

Table 1: Parameters varied in the different test cases
Control Touch / Gamepad (USB/BLE) / Gyro

Mobile phone Samsung S4 / Samsung S7

Figure 3: Touch, gamepad, Ethernet and screen de-
lay measurement setup.

in Table 1 to find the lower bounds for the delays present
in different control scenarios. The mobile devices used for
the measurements are Samsung S4 and Samsung S7. The
devices are equipped with the newest Android versions avail-
able for each device at the time of writing, which are An-
droid 5.0 for the S4 and Android 6.0 for the S7. We control
the device either by using the touch screen or an external
gamepad connected to the mobile device both with USB and
Bluetooth connection. We also measure the delay when the
game is controlled using the embedded gyroscope of the mo-
bile device. The gaming platform consists of a remote server
and an Android mobile client device, both of which run the
GamingAnywhere software[15].

3.1.1 Control delay
We define control delay in the mobile device to be the de-

lay between user initiating a control input and the control
command to be sent through the radio interface of the mo-
bile device. The most common interface for user commands
is a virtual gamepad using the touch screen of the mobile
device. However, an external or embedded USB-connected
gamepad can also be used in mobile cloud gaming. The
gamepad can also be attached via a wireless Bluetooth con-
nection. Additionally, the gyro sensor inside the mobile de-
vice can be used for controlling certain games. Each control
method introduces different amounts of delay to the pipeline.

In our previous work we have measured the control delay
of the input options mentioned previously using an Arduino-
compatible measurement device depicted in Figures 3 and 4.
The device is based on the WALT[20] project. The device is
built around the Teensy 3.2 USB development board. The
device can trigger a touch input on the mobile phone us-
ing a coin attached to a relay. The device can also act as
a gamepad inputting control commands through the USB
interface. The two attached photodiodes can detect the
change in illumination of a marked frame on the display
of the mobile device. This information together with time
synchronization with the mobile device is used to calculate
the base latencies of the mobile devices. The time error be-

Figure 4: Gyro and Bluetooth delay measurement
setup.

Table 2: Control delay measurement results.
Samsung S4 Samsung S7
Avg. SD Avg. SD

Touch to kernel (ms) 40.5 2.3 24.1 3.0
Gamepad to kernel (ms) 0.6 0.6 0.2 0.4
Kernel to callback (ms) 5.5 1.6 3.4 0.6
Callback to radio (ms) 9.1 2.7 1.6 0.8

tween the devices is minimized using the USB connection
from the Teensy board to the mobile phone before each ex-
periment. The setup is capable of synchronizing the clocks
within 100µs accuracy

In addition we measured the delay of the embedded gy-
roscope in the mobile device by comparing it to raw read-
ings from a gyro attached to the measurement device. Both
the reference gyro and the mobile phone were attached to
a metal plate. When moved, both create a similar acceler-
ation trace. Comparing the start and end times of move-
ments, we could measure how much delayed are the gyro
readings available for mobile application. The measurement
device was also equipped with a BLE (Bluetooth Low En-
ergy) chip, allowing us to measure the delay in receiving
commands through a Bluetooth connection.

The average delays and standard deviations are summa-
rized in Table 2. The results show the delays from the user
input to the kernel registering the event and the delay from
the kernel event to the application code (callback). We also
measured how long does it take to prepare a single control
event packet and send it through the radio interface. Touch
screen has the slowest response on both tested devices. The
delay however varies signifigantly between the devices. The
newer Samsung S7 averages at 29.1 ms total control delay
while the older Samsung S4 uses 55.1 ms on average for pro-
cessing the touch input. A USB-connected gamepad is the

Table 3: Mobile device gyro sensor and Bluetooth
delay.

Samsung S4 Samsung S7
Avg. SD Avg. SD

Gyro delay (ms) 78.8 32.8 12.2 4.1
BLE delay (ms) 17.5 5.2 22.0 4.9

Table 4: Frame receive, decode and display mea-
surement results.

Samsung S4 Samsung S7
Avg. SD Avg. SD

Frame receive (ms) 10.5 5.8 9.6 4.5
Frame decode (ms) 20.4 11.6 8.3 1.1
Frame display (ms) 25.1 5.4 27.3 4.7

fastest input method on all devices ranging from 5.2 to 15.2
ms.

For the Bluetooth and Gyro delays, we were only able to
measure the complete delay from input to the application
callback. The results are shown in Table 3. Bluetooth (BLE)
response varies between 17.5 ms and 28.2 ms on the tested
devices. Gyro response is fast, around 10 ms for the more
newer devices. The gyro sensor on the Samsung S4 however
seems to be significantly slower with a delay of 79 ms.

In the cloud gaming use case the controls are sent directly
to the cloud gaming server. We measured this delay to be
9.1 ms on the Samsung S4 and 1.6 ms on the Samsung S7.
Overall the results show the decrease in control delay using
the more recent mobile device and Android operating system
version.

3.1.2 Playout delay
In order to measure the total playout delay (OD) per-

ceived by the player, we slightly modified the GamingAny-
where Android client by injecting timestamps to different
parts of the code. In this way, we could log and analyze also
the breakdown of the total OD into delay caused by frame
reception and frame decoding. We measured the timestamp-
ing code to add under 1 ms of additional latency to the
system. The measurement is repeated for several frames
processed giving us the possibility to calculate the averages
over a time period.

Frame receive and decode: The cloud gaming client
receives a single frame in multiple network packets and the
entire frame is then decoded using the hardware accelerated
decoders. Using the GamingAnywhere client, we measured
both delays with 1080p resolution. The results are presented
in Table 4. The results show that the delay of frame recep-
tion is not dependant on the device. However, frame decod-
ing is substantially faster with the newer Samsung S7 which
decodes a single frame in roughly 8 ms compared to the 20
ms of the Samsung S4.

Frame display: After decoding the frame is sent to the
display buffer. We define frame display delay as the time
between the frame returning from the video decoder to the
time the frame is displayed on the screen of the mobile de-
vice. Our previous measurements have shown that this final
delay is a substantial addition to the overall base latency.
Table 4 includes the frame display times measured for each
of the mobile phones. The frame display time does not vary
substantially between the tested devices. This is because all

phones have similar displays with 60 Hz refresh rates which
translates to the screen updating roughly every 17 ms. The
results however show an average of 1.5 display refresh peri-
ods from decoder output to the frame being visible on the
screen. This is because Android uses double buffering to
avoid screen tearing with the expense of display delay.

3.2 Network delay
The cloud gaming client is connected to the Internet us-

ing either a WiFi or a dedicated campus LTE network which
was very lightly loaded. The deployment includes two cases:
When using WiFi access, we deploy it in the same local net-
work as the mobile device. When using the LTE access,
the gaming platform is deployed behind a fibre connection
from the Internet Service Provider (ISP) which in practice
provides similar latency as if it is deployed within the ISP’s
network. We measured a difference of 1-2 ms when measur-
ing the latency to our gaming platform server compared to
the first pingable IP address behind the packet core of the
LTE network from our mobile device.

3.2.1 Access delay
Access delay is the latency between the mobile device and

the first pingable IP address. In the Wi-Fi use case this
is the access point and in the case of mobile networks it is
a machine just behind the packet core. Regardless of the
distance between the cloud gaming client and the server,
access delay must be accounted for to the base latency of
the system. We connect the tested mobile devices both to
a dedicated campus LTE network and to a local network
through a Wi-Fi router. The LTE network is a full-fledged
network setup with a maximun download speed of 70 Mbps
(category 3) with practically no load. The average delay for
the LTE scenario was 12 ms. The Wi-Fi network was faster
in optimal conditions with an average delay of only 1.6 ms.

3.2.2 Impact of Access Network Conditions on La-
tency and Throughput

In the optimal test cases the LTE network has virtually
no load and the nearest base station is located close within
the same building as the test device. In reality the signal
strength of the connection might vary drastically between
geographical locations which affects the response delay. We
next look at the effect of signal strength and cross-traffic to
the delay of the LTE scenario.

We measure the effect of signal strength on the network
delay by logging the LTE Reference Signal Received Power
(RSRP) and the latency to the closest pingable IP address
while walking closer and further from the base station. RSRP
is defined as the linear average over the power contributions
of the resource elements that carry cell-specific reference sig-
nals within the measurement frequency bandwidth [1]. Fig-
ure 5 highlights the effect of signal strength for the delay.

We observe three distinct patterns in the delay. The delay
is really stable from -50 to just under -70 dBm. After that
the fluctuation of the delay becomes more noticeable up to
a signal strength of -100 dBm. Starting from just under -
100 dBm, the delay starts to fluctuate more heavily and the
average delay doubles quickly. At -100 dBm the delay has
already doubled and around -110 dBm the average delay is
four times the delay in the optimal conditions and contin-
ues to grow exponentially. We used packet length of 1700
bytes in the experiments which we measured to be the aver-

−60 −70 −80 −90 −100 −110 −120

0
50

10
0

15
0

20
0

RSRP (dBm)

N
et

w
or

k
de

la
y

(m
s)

Median
25% percentile
75% percentile

Figure 5: The effect of signal strength on delay mea-
sured to the first pingable IP address in the LTE
network.

age packet length of the RTP traffic used between the cloud
gaming client and server. Total of 3000 latency/RSRP pairs
were measured. The packet loss in the link layer is the main
contributor for the delay in the worst signal strength con-
ditions. Such low signal strength values are however rarely
observed in commercial network with decent network cover-
age. In our further analysis of the delay results in Section
4 we presume a network with good coverage and thus don’t
take into account the increased network delays in extreme
conditions.

The traffic load in the access network also affects directly
the delay perceived by the user as the user’s mobile phone
shares the available resources with others. We were able
to create a notable difference in the delay with three other
mobile devices connected to the base station. We uploaded
random data with Iperf to a server with one to three LTE
category 4 mobile phones while measuring the latency to
the nearest pingable instance with an LTE category 3 mo-
bile phone. Using only one or two devices to create traffic
was not enough but with three devices sending traffic uplink
at their maximum rates, the test device’s latency started to
fluctuate. Figure 6 shows the fluctuation with one to three
mobile phones creating uplink traffic. We did not observe
similar results in downlink traffic. However increasing the
amount of users generating traffic should worsen the delays
observed also in the downlink case. The uplink scenarios are
however rare with current mobile applications. The major-
ity of the traffic is downstream with the exception of some
video broadcasting applications. Even those don’t however
consume the entire uplink bandwidth.

3.2.3 Wide Area Network (WAN) delay
WAN delay depends on the location of the cloud gaming

server and the distance between the user and the server.
We conducted a ping latency study between a large number
of hosts within Europe in order to characterize the latency
contribution of the wired segment of the network path. We

0 50 100 150 200 250 300

0
5
0

1
0
0

1
5
0

Time (s)

N
e
tw

o
rk

 d
e
la

y
 (

m
s
)

No cross−traffic
1 user max. UL
2 users max. UL
3 users max. UL

Figure 6: The effect of uplink traffic on the mov-
ing average of delay measured to the first pingable
instance in an LTE network.

used the Planetlab Europe testbed to measure the latency
from 79 Planetlab servers to 1622 speedtest.net server lo-
cations. Both the Planetlab and the Speedtest.net servers
are geographically distributed across Europe. The servers
included in the study are displayed in Figure 7.

Next, we divided the European continent into smaller ge-
ographical areas based on the Nomenclature of Territorial
Units for Statistics (NUTS) classification of areas provided
by Eurostat[12]. NUTS is a hierarchical system for divid-
ing Europe into geographic territories for regional statistics
analysis. We chose the smallest (level 3) areas for considera-
tion and calculated the mean average latencies to each area
from the 79 Planetlab servers.

We analyze the delay benefits of distributing the cloud
gaming architecture based on the gathered latency data in
Section 4.

3.3 Processing delay
The cloud gaming server captures the game scene, encodes

it into a video stream and sends it to the cloud gaming client.
Simultaneously the cloud gaming server receives input com-
mands from the client and feeds them to the game through
the operating system. The processing delay depends on the
specific hardware and software used for the cloud gaming
server. Huang et al. [15] benchmarked the open-source
cloud gaming software GamingAnywhere against commer-
cial alternatives available at that time on a desktop PC.
GamingAnywhere had the lowest delay ranging between 27
and 34 ms depending on the game.

This delay can however be shortened by using purpose-
built features of modern graphics cards. Nvidia’s solution is
to capture the framebuffer on the fly and hand it to the built-
in NVENC chip which is capable of encoding the graphics
output in realtime. These features are available for cloud
gaming providers through the Capture SDK[25] and is sup-
ported on selected graphics cards. We launched an Amazon
G2 instance with an Nvidia GRID K520 graphics card and

Figure 7: PlanetLab servers (red) and Speedtest.net
servers (blue) used in the latency study.

used timing hooks injected into the Capture SDK to measure
the time from starting a frame capture to an encoded frame
ready for transport. We ran the Unigine Heaven graphics
benchmark on the virtual machine while capturing the video
stream using the SDK. The average delay for a single frame
was 17 ms. As the purpose of this paper is to analyze the
achievability of imperceptible latency in mobile cloud gam-
ing in optimal conditions, we choose the 17 ms as a reference
delay for the cloud gaming server.

3.4 Summary of different scenarios
The delay measurement results are summarized in Table

5. The results include all other delays of mobile cloud gam-
ing except the wired segment of the network path. It is
clear that the newer and more powerful Samsung Galaxy
S7 is faster in all scenarios with an average of 25% or 37
ms improvement over all the test cases. This improvement
cumulates mainly from faster touch interface, faster video
decoding capabilities and a clearly faster gyroscope. In the
optimal conditions using WiFi can save approximately 10
ms on the total delay as the access delay is significantly
shorter. This improvement can be even greater depending
on the network conditions.

The control method has a significant effect on the total
delay as can be seen from the results. The most commonly
used input method using the touch screen of the mobile de-
vice has quite a large impact on the total delay. There is
however a substantial improvement in the newer S7 which
receives a touch input in 27.5 ms on average to the appli-
cation code compared to the 46 ms of the older S4. USB
connected controller is the fastest method of receiving input
commands into the application code adding only a couple of
milliseconds to the delay. The gyroscope on the S4 is clearly
not suitable for delay sensitive applications while the gyro on
the S7 adds only 12 ms of delay to the pipeline. This shows
that certain games with continuous movements such as car
games could benefit from using the gyroscope of the mobile
device instead of a virtual gamepad on the touch screen.

Table 5: Delay measurement results for all scenarios
without wired segment of the network delay.
Mobile
phone

Network
type

Input
type

Device
delay

Server
delay

Access
delay

Total

S4

WiFi

Touch 110 17 1.6 128.6
USB 70.4 17 1.6 89
BLE 86.9 17 1.6 105.5
Gyro 148.2 17 1.6 166.8

LTE

Touch 110 17 12 139
USB 70.4 17 12 99.4
BLE 86.9 17 12 115.9
Gyro 148.2 17 12 177.2

S7

WiFi

Touch 77.5 17 1.6 96.1
USB 51.5 17 1.6 70.1
BLE 72.5 17 1.6 91.1
Gyro 62.7 17 1.6 81.3

LTE

Touch 77.5 17 12 106.5
USB 51.5 17 12 80.5
BLE 72.5 17 12 101.5
Gyro 62.7 17 12 91.7

Bluetooth controller on the S7 has approximately the same
delay as the touch screen. However on the S4 the Bluetooth
delay is actually 5 ms shorter than on the S7. This can be
explained through the different Bluetooth configurations in
the versions of the Android operating system. The newer
Android 6.0 accepts slightly higher minimum intervals for
updates on the BLE connection than the older Android 5.0.

The different delay scenarios are visualized in Figure 8
without the wired segment of the network path. The JND
threshold for imperceivable delay for indirect touch (96 ms)
is plotted as a dashed line to the figure. With the Samsung
S4 phone the only scenario which leaves any room for the
delay induced by the wired segment of the network path is
the WiFi option with USB input. Same options are also
best for the S7, however also the WiFi with Bluetooth and
gyro also manage to fall under the threshold for perceivable
delay. Using LTE, only the USB and gyro control options
fall under the limit.

4. OPTIMIZING SERVER PLACEMENT:
CASE EUROPE

In this section we measure the delay in the wired network
path of the cloud gaming pipeline. This is the last piece
missing from the total delay. We conduct a latency study in
Europe and analyze how much the delay can be shortened by
increasing the number of data center locations. The results
are compared to the limits found for the different scenarios
measured in Section 3. The found placements for the data
center locations are also compared to existing and future
Amazon EC2 data center locations.

4.1 Optimizing data center location count
The 79 Planetlab servers depicted in Figure 7 were cho-

sen as the candidates for the locations of the data centers
for the cloud gaming provider. The Eurostat statistics used
also provide population information for each area with the
speedtest.net servers for which we studied the network la-
tency from the Planetlab server locations. This enabled us
to have a database of geographical regions in Europe with
latency data to the selected cloud gaming server locations
with an estimate of the relative potential user data base in
each region.

We utilized a greedy algorithm to rank the servers based
on their coverage of potential users. The greedy algorithm

S4 WiFi S4 LTE S7 WiFi S7 LTE

0

20

40

60

80

100

120

140

160

180
La

te
n
cy

 (
m

s)

Device delay
Server delay
Access delay

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

Figure 8: Response delay in different scenarios with-
out the wired segment of the network path. The
JND threshold for imperceivable delay (96 ms) is
plotted with a dashed line.

has been previously proven to achieve near-optimal perfor-
mance[29]. It approximates the global optimal solution by
making the locally optimal decision in each stage. The
greedy algorithm works as follows. In the first step, we
choose a single server location which leads to the lowest av-
erage delay for all clients under the assumption that all the
clients connect to that server. We then iteratively add a
single server location in each step to the system which in
conjunction with the previously chosen servers lead to the
best average delay. We assume that each client connects to
the closest server location. We add server locations into the
system one by one until the latency benefit becomes neg-
ligible. We were also able to calculate the 4 first optimal
data center locations with brute force and the results were
identical with the greedy algorithm.

Figure 9 shows how the latencies reduce as more data
center locations are added into the system. The results show
that the latency difference between the 90th percentile from
one data center location to ten locations is roughly 20 ms.
After this each new data center location barely affects the
latency distribution at all.

The results show that additional server locations above
10 don’t shorten the average delay concieved by the service
users significantly. The locations chosen by the greedy al-
gorithm are shown in Figure 10. The number before the
city name shows the priority of the location if less than 10
locations are to be chosen. As expected, central regions of
Europe are more densily covered by chosen locations as the
population density is larger in these regions. However as
we did not impose capacity limits to the data centers, the
first four locations are quite sparsely located to optimize the
latency for all parts of the continent.

0 10 20 30 40 50 60 70
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

S
7
/L
T
E
/G
y
ro

S
7
/W
iF
i/
B
lu
e
to
o
th

S
4
/W
iF
i/
G
a
m
e
p
a
d

S
7
/W
iF
i/
G
y
ro

S
7
/L
T
E
/G
a
m
e
p
a
d

S
7
/W
iF
i/
G
a
m
e
p
a
d

Location count

1
2
3
4
5
6
7
8
9
10

Figure 9: Latency distribution with different loca-
tion counts

Using data from Section 3 and the 96 ms JND threshold,
we can calculate what is the limit of perceivable delay for
the wired network delay in different scenarios. The limits are
drawn in Figure 9 with dashed lines. We notice that with
the newer Samsung S7 phone using WiFi and USB input we
can reach latencies below the limit for approximately half of
the population using one data center location. The coverage
can be raised to 60% with 3 data center locations and to
80% using 10 locations. With the same device and WiFi
also the gyro input and USB input with LTE scenenarios
are somewhat feasible for a proportion of the population
ranging from 30% with one location up to 60% with ten
locations. In other scenarios it is practically impossible to
achieve low enough latencies for any number of users.

Setting up a cloud infrastructure is possible only for the
biggest companies in the entertainment business. Smaller
companies most likely would at least in the beginning like
to use existing cloud providers for their server locations. In
Figure 11 we compare the latency distribution when using
existing and future Amazon EC2 locations and the locations
chosen with the greedy algorithm. At the time of writing the
available locations for EC2 servers in Europe were Ireland
and Frankfurt with London and Paris to be added soon. We
compare both existing and future EC2 locations against the
same number of locations placed by the greedy algorithm.

For the S7/WiFi/Gamepad scenario using locations cal-
culated by the greedy algorithm, no additional users can
achieve delays under the required limit compared to the EC2
locations. However the coverage can be raised from 50% to
70% by using four locations calculated by the greedy algo-
rithm instead of the future Amazon EC2 locations. This
shows that the current and future EC2 locations are possi-
bly not completely optimized for latency. This is natural as
there are multiple other requirements for a data center loca-
tion and most of the latency-related aspects can be covered
by using content delivery network (CDN) locations placed
more on the network edge.

In our latency study so far, we have not assigned a maxi-
mum size for a data center location. This can lead to vastly
different amount of users server by different data center lo-
cations. Next, we study how the latency distribution differs

1. Amsterdam

2. Madrid

3. Turin

4. Warsaw

5. Karlsruhe

6. London

7. Stockholm

8. Budapest

9. Lisbon

10. Prague

Figure 10: Server locations allocated by the greedy
algorithm.

when the load on data centers locations is more evenly di-
vided.

4.2 Load balancing and local optimization
The delay results presented in Figure 9 assumed all users

would be served by their closest data center location. This
is however not always possible if a certain location is un-
der heavy load. To measure the effect of load balancing on
the overall latency distribution, we perform a simulation of
a cloud gaming system where the location sizes have been
calculated so that under peak hours the users are evenly dis-
tributed across the data center locations. This means that in
the peak hours a location with the lowest latency for a user
might be full which leads to the user being assigned for the
next location with longer latency until a free slot is available.
We use the WoWAH dataset [23] to get realistic information
on user churn in a game. The dataset includes 91065 players
in total for which we assigned locations in Europe based on
the population distribution for different areas.

The latency distribution for the load balanced simulation
is compared with the non-balanced version in Figure 12.
The median latency differs by under 5 ms from the non-
balanced version. The latency range widens also a little on
the balanced version, not however more than 5 ms.

The dataset used enables us to also calculate how much
the server count can be lowered if local optimizations are
performed using migrations inside a data center. The costs
increase depending on the amount of servers the cloud gam-
ing provider needs to set up. If the servers are rented, then
the number of running instances also affects the overall cost.
The g2.2xlarge instance used can handle 2-16 concurrent
users at a time[26]. We used 4 as a realistic number of con-
current users for a high-end game as the instance has two
GPU cores. However, as users leave the service, the game
servers might have empty slots and the player distribution
among the servers might become unnecessarily scattered. If
local migration is possible, then the empty slots could be

0 10 20 30 40 50 60 70
Latency (ms)

0.0

0.2

0.4

0.6

0.8

1.0

C
D
F

S
7
/L
T
E
/G
y
ro

S
7
/W

iF
i/
B
lu
e
to
o
th

S
4
/W

iF
i/
G
a
m
e
p
a
d

S
7
/W

iF
i/
G
y
ro

S
7
/L
T
E
/G
a
m
e
p
a
d

S
7
/W

iF
i/
G
a
m
e
p
a
d

Optimal servers [2]

Optimal servers [4]

Amazon EC2 locations [2]

Amazon EC2 locations (2017) [4]

Figure 11: Latency distribution comparison between
Amazon EC2 locations and locations given by the
greedy algorithm.

1 2 3 4 5 6 7 8 9 10
Location count

0

10

20

30

40

50

60

70

80

La
te
n
cy

 (
m
s)

Location size not limited
Location size limited

Figure 12: Effect of load balancing on latency dis-
tribution with different location counts.

filled on-the-fly and unnecessary servers shut down. We run
a simulation using the dataset to calculate the possible cost
savings if local migration is possible in the system. In the
simulation, the servers were optimized each hour by migrat-
ing users between servers to minimize the total number of
servers running. The simulation showed that the amount
of servers running can be decreased by 13% by average if
migrations are enabled. However the maximum number of
servers required only decreased by 4%.

5. FUTURE PROJECTIONS
The results shown in Chapters 3 and 4 show that achiev-

ing imperceptible latency with current technology is difficult
and requires optimal conditions with the correct type of con-
trol method. The base latencies of the mobile devices are
still surprisingly high although definitive development from
previous device generations has occurred. The touch screen

and displaying a frame on the screen of the mobile device are
the largest delay components that still need to be developed.

Previous study by Beyer et al. reveals how the touch
screen latency has the tendency to decrease over device gen-
erations[3]. Frame display times are bound by the display
refresh rate and by the use of double and triple buffering.
Mobile device displays currently have a set refresh rate of
60 Hz which translates into a lowest possible delay of 16.7
ms between frames. In order to avoid visible tearing in the
image, the operating system, including Android, uses double
or sometimes triple buffering for holding previous rendered
frames before they are actually displayed on the screen of
the mobile device. This results in better visual quality with
the expense of latency.

It is difficult for us to forecast whether the trend in re-
ducing the touch screen latency continues in the future but
some solutions to reduce the frame display latency are al-
ready available. One option is to increase the refresh rate of
the device display. SoCs (system-on-a-chip) which support
higher frequency (120 Hz) refresh rates have been already
introduced[19]. They are not however present in current
production devices.

Another option is to enable on operating system level the
possibility for front buffer rendering. We measured a delay
of 1.5 display periods or roughly 25 ms for display updates
on current mobile phones showing the existence of double
buffering. Our results suggest that front buffer rendering
with a method called scanline racing could potentially drop
this delay to 8 ms[2]. On the other hand, a display with 120
Hz refresh rate could reduce the latency of buffered updates
by half compared to currently used displays. Cloud gam-
ing clients also benefit from more powerful SoCs on mobile
phones as the frame decoding time is shorter. However, the
screen resolutions are also rising which could diminish the
effect of more powerful SoCs.

Another source of delay that is likely to reduce in the fu-
ture is the one caused by the access network. 5G mobile
networks are aiming for shorter than 1ms latency. Such low
latency is achievable through novel radio access technolo-
gies tapping the currently largely unused higher frequency
spectrum, which allows for much wider channels and, con-
sequently, much higher data rates as a result of which also
the frame delivery delay reduces[30].

We plot the hypothetical latency results with front buffer
rendering (FB), 120 Hz displays (Hz), and 1 ms access net-
work delay (Ac) together with the current measured ones for
the case of Samsung S7 device with LTE access in Figure 13.
Just by employing front buffer rendering with a fast display
reduces the latency by roughly 20 ms regardless of the con-
trol method. Looking back at Figure 11, such improvement
would have a substantially bigger effect than doubling the
number of server locations. In the case of clients using LTE
and gamepad, for example, it would increase the fraction of
clients that could be potentially served with imperceptible
latency by 40-50 percentage points, depending on the server
placements chosen, because the network latency budget in-
creases from roughly 15 to 35 ms. Doubling the number
of server locations increases the fraction of clients by 20-25
percentage points at most.

6. CONCLUSION
This paper studies the end-to-end latency in mobile cloud

gaming. We set out to investigate whether it is possible

S7 LTE S7 LTE
FB

S7 LTE
FB+Hz

S7 LTE
FB+Hz+Ac

0

20

40

60

80

100

120

La
te

n
cy

 (
m

s)

Device delay
Server delay
Access delay

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

To
u
ch

U
S

B

B
LE

G
y
ro

Figure 13: Response delay in different scenarios
with future improvements without the wired seg-
ment of the network path. FB = Front buffer ren-
dering. Hz = 120 Hz displays. Ac = 1 ms Access
delay (5G)

to achieve latencies short enough for users not to perceive
them while using the system. Our results suggest that it is
possible but only in limited situations where, for instance,
latest mobile device models and a separate control device
are used because touch screen delay is too long. Replica-
tion of the service and server placement optimization are
also necessary and they can have a major effect in provid-
ing short enough latencies. However, we also noticed that
their impact is substantially smaller than the expected im-
pact of near future developments on the mobile device side
just because the mobile device imposed delays are clearly
the biggest components in the end-to-end latency. In the
future, it would be interesting to study in more detail the
ability of users to perceive latency in mobile cloud gaming,
extend the case study to other continents, and to investigate
the effect of new VR and AR devices, such as Oculus Rift
and Hololens, on the end-to-end latency.

7. ACKNOWLEDGMENTS
This work has been financially supported by the Academy

of Finland (grant numbers 278207 and 297892), Tekes - the
Finnish Funding Agency for Innovation, and the Nokia Cen-
ter for Advanced Research.

8. REFERENCES
[1] 3rd Generation Partnership Project. TS 36.214 LTE;

Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical layer; Measurements, 2014.
Release 12.

[2] Anonymous. Anonymized for double-blind review.

[3] J. Beyer, R. Varbelow, J.-N. Antons, and S. Zander. A
method for feedback delay measurement using a
low-cost arduino microcontroller. In Proceedings of the
7th International Workshop on Quality of Multimedia
Experience (QoMEX), IEEE, 2015.

[4] K. Boos, D. Chu, and E. Cuervo. Flashback:
Immersive virtual reality on mobile devices via
rendering memoization. In Proceedings of the 14th
Annual International Conference on Mobile Systems,
Applications, and Services, MobiSys ’16, pages
291–304, New York, NY, USA, 2016. ACM.

[5] E. Cattan, A. Rochet-Capellan, and F. Bérard. A
predictive approach for an end-to-end touch-latency
measurement. In Proceedings of the 2015 International
Conference on Interactive Tabletops & Surfaces, ITS
’15, pages 215–218, New York, NY, USA, 2015. ACM.

[6] C.-M. Chang, C.-H. Hsu, C.-F. Hsu, and K.-T. Chen.
Performance measurements of virtual reality systems:
Quantifying the timing and positioning accuracy. In
Proceedings of the 2016 ACM on Multimedia
Conference, MM ’16, pages 655–659. ACM, 2016.

[7] K.-T. Chen, Y.-C. Chang, H.-J. Hsu, D.-Y. Chen,
C.-Y. Huang, and C.-H. Hsu. On the quality of service
of cloud gaming systems. Trans. Multi., 16(2):480–495,
Feb. 2014.

[8] K.-T. Chen, Y.-C. Chang, P.-H. Tseng, C.-Y. Huang,
and C.-L. Lei. Measuring the latency of cloud gaming
systems. In Proceedings of the 19th ACM international
conference on Multimedia, pages 1269–1272. ACM,
2011.

[9] S. Choy, B. Wong, G. Simon, and C. Rosenberg. A
hybrid edge-cloud architecture for reducing
on-demand gaming latency. Multimedia Systems,
20(5):503–519, 2014.

[10] J. Deber, B. Araujo, R. Jota, C. Forlines, D. Leigh,
S. Sanders, and D. Wigdor. Hammer time!: A
low-cost, high precision, high accuracy tool to measure
the latency of touchscreen devices. In Proceedings of
the 2016 CHI Conference on Human Factors in
Computing Systems, pages 2857–2868. ACM, 2016.

[11] J. Deber, R. Jota, C. Forlines, and D. Wigdor. How
much faster is fast enough?: User perception of
latency & latency improvements in direct and indirect
touch. In Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems,
pages 1827–1836. ACM, 2015.

[12] Eurostat. NUTS - Nomenclature of territorial units for
statistics. Overview.
http://ec.europa.eu/eurostat/web/nuts/overview.

[13] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen,
and C.-H. Hsu. Qoe-aware virtual machine placement
for cloud games. In Network and Systems Support for
Games (NetGames), 2013 12th Annual Workshop on,
pages 1–2. IEEE, 2013.

[14] H.-J. Hong, D.-Y. Chen, C.-Y. Huang, K.-T. Chen,
and C.-H. Hsu. Placing virtual machines to optimize
cloud gaming experience. Cloud Computing, IEEE
Transactions on, 3(1):42–53, Jan 2015.

[15] C.-Y. Huang, C.-H. Hsu, Y.-C. Chang, and K.-T.
Chen. Gaminganywhere: An open cloud gaming
system. In Proceedings of the 4th ACM Multimedia
Systems Conference, pages 36–47, 2013.

[16] Z. Ivkovic, I. Stavness, C. Gutwin, and S. Sutcliffe.
Quantifying and mitigating the negative effects of
local latencies on aiming in 3d shooter games. In
Proceedings of the 33rd Annual ACM Conference on
Human Factors in Computing Systems, CHI ’15, pages
135–144, New York, NY, USA, 2015. ACM.

[17] P. Jain, J. Manweiler, and R. Roy Choudhury.
Overlay: Practical mobile augmented reality. In
Proceedings of the 13th Annual International
Conference on Mobile Systems, Applications, and
Services, MobiSys ’15, pages 331–344, New York, NY,
USA, 2015. ACM.

[18] M. Jarschel, D. Schlosser, S. Scheuring, and
T. Hossfeld. An evaluation of qoe in cloud gaming
based on subjective tests. In Proceedings of the 5th
International Conference on Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS),,
pages 330–335. IEEE, 2011.

[19] B. C. Joshua Ho. MediaTek Demonstrates 120 Hz
Mobile Display. http://www.anandtech.com/show/
8852/mediatek-demonstrates-120-hz-mobile-display.

[20] M. Koudritsky. Github. Walt Latency Timer.
https://github.com/google/walt.

[21] B. Lee and A. Oulasvirta. Modelling error rates in
temporal pointing. In Proc. of the 2016 CHI
Conference on Human Factors in Computing Systems,
CHI ’16, pages 1857–1868. ACM, 2016.

[22] K. Lee, D. Chu, E. Cuervo, J. Kopf, Y. Degtyarev,
S. Grizan, A. Wolman, and J. Flinn. Outatime: Using
speculation to enable low-latency continuous
interaction for mobile cloud gaming. In Proceedings of
the 13th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys ’15,
pages 151–165, New York, NY, USA, 2015. ACM.

[23] Y.-T. Lee, K.-T. Chen, Y.-M. Cheng, and C.-L. Lei.
World of warcraft avatar history dataset. In
Proceedings of the second annual ACM conference on
Multimedia systems, pages 123–128. ACM, 2011.

[24] Y.-T. Lee, K.-T. Chen, H.-I. Su, and C.-L. Lei. Are all
games equally cloud-gaming-friendly? an
electromyographic approach. In Proceedings of the 11th
Annual Workshop on Network and Systems Support
for Games (NetGames), pages 1–6. IEEE, 2012.

[25] NVIDIA. NVIDIA Capture SDK.
https://developer.nvidia.com/capture-sdk.

[26] Nvidia. Nvidia GRID GPU Specs and features.
http://www.nvidia.co.uk/object/
cloud-gaming-gpu-boards-uk.html.

[27] L. Pantel and L. C. Wolf. On the impact of delay on
real-time multiplayer games. In Proceedings of the
12th International Workshop on Network and
Operating Systems Support for Digital Audio and
Video, NOSSDAV ’02, pages 23–29. ACM, 2002.

[28] PlanetLab. PlanetLab Europe.
https://www.planet-lab.eu/.

[29] L. Qiu, V. N. Padmanabhan, and G. M. Voelker. On
the placement of web server replicas. In INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE
Computer and Communications Societies. Proceedings.
IEEE, volume 3, pages 1587–1596. IEEE, 2001.

[30] T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao,
Y. Azar, K. Wang, G. N. Wong, J. K. Schulz,

M. Samimi, and F. Gutierrez. Millimeter wave mobile
communications for 5g cellular: It will work! Access,
IEEE, 1:335–349, 2013.

[31] M. Satyanarayanan, P. Bahl, R. Caceres, and
N. Davies. The case for vm-based cloudlets in mobile
computing. IEEE pervasive Computing, 8(4):14–23,
2009.

[32] R. Shea, J. Liu, E.-H. Ngai, and Y. Cui. Cloud
gaming: architecture and performance. IEEE Network,
27(4), 2013.

[33] O. Soliman, A. Rezgui, H. Soliman, and N. Manea.
Mobile Cloud Gaming: Issues and Challenges, pages
121–128. Mobile Web Information Systems. Springer,
2013.

[34] Speedtest. Speedtest.net. http://www.speedtest.net/.

[35] D. Wu, Z. Xue, and J. He. icloudaccess: Cost-effective
streaming of video games from the cloud with low
latency. Circuits and Systems for Video Technology,
IEEE Transactions on, 24(8):1405–1416, Aug 2014.

[36] Q. Zhang, Q. Zhu, M. Zhani, R. Boutaba, and
J. Hellerstein. Dynamic service placement in
geographically distributed clouds. Selected Areas in
Communications, IEEE Journal on, 31(12):762–772,
December 2013.

[37] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L.
Hellerstein. Dynamic service placement in
geographically distributed clouds. IEEE Journal on
Selected Areas in Communications, 31(12):762–772,
2013.

