
Monitoring as First Class Citizen in an Autonomic Network
Universe

Martin May
ETH Zurich
Switzerland

maym@tik.ee.ethz.ch

Matti Siekkinen, Vera Goebel,
Thomas Plagemann

University of Oslo, Dept. of Informatics
Norway

{siekkinen,goebel,plageman}
@ifi.uio.no

Ranganai Chaparadza, Lorenzo
Peluso

Fraunhofer FOKUS Institute
Berlin, Germany

{chaparadza, lorenzo.peluso}
@fokus.fraunhofer.de

ABSTRACT
When developing a new autonomic networking architecture from
scratch with monitoring as a first class citizen, a whole set of new
requirements have to be addressed. The main reason for this is
that no a priori knowledge about the network, the monitoring
tasks, etc. is available in the architecture itself. Monitoring could
be placed everywhere in the network and it must be possible for
monitoring modules to explore the available monitoring support
in its surrounding at runtime. Monitoring needs also to be
dynamic, adaptive and programmable. This paper presents the
new requirements and how these requirements on monitoring are
addressed in the ANA architecture.

Keywords
Monitoring, autonomic networks, network architecture

1. INTRODUCTION
Traditionally, network monitoring is used as a tool for

network management to constantly monitor the state of the
network and to notify the network administrator in case of failures
or other exceptional events. More advanced usages of network
monitoring include for example Quality-of-Service monitoring
and workload balancing in distributed systems. Independent of the
particular use of network monitoring there is one common factor
for all monitoring solutions: monitoring is added to the network
after the network and basic protocols have been designed.

In the context of the recent quest for the design and
architecture of the future Internet, the concept of autonomic
networking and networks with self-* properties, like self-
configuration, self-optimization, self-healing, and self-protection
[4] are intensively studied. Obviously, monitoring is a
fundamental part of such autonomic systems, without it no self-*
properties can be achieved, because these tasks are performed by
a kind of feedback control loop that is driven by monitored
(observed) events or changes in variables. Monitoring is the
element responsible for measuring the parameters of the
controlled system that are relevant for the task under control (e.g.,

current load for performance optimization, link availability for
fault tolerance, etc.). In the Autonomic Network Architecture
(ANA) project [1], we develop an autonomic network architecture
from scratch, with monitoring as first class citizen, meaning
monitoring is as fundamental in the ANA architecture as other
basic networking concepts, like addresses, naming, labeling,
forwarding, routing, etc. This is a paradigm shift for monitoring.
Classical monitoring solutions can be characterized as follows:
they are designed for particular problems, the monitoring task is
static, placement of monitoring probes is done manually with a
priori knowledge about the network topology, they assume
minimal support from nodes and protocols (e.g., active
measurement), or they place the entire burden on the nodes
(routers) to support heavy-weight mechanisms (e.g., NetFlow or
passive measurements in general).

Anchoring monitoring as first class citizen in the ANA
architecture puts a whole set of new requirements onto the
monitoring concepts and principles that need to be supported in
the autonomic network architecture. The main difference between
today’s solution and the ANA approach for monitoring is that the
monitoring concepts and principles in ANA cannot rely on any a
priori knowledge like the monitoring tasks, the network topology,
and also the particular support for monitoring in a particular
network environment and location. As identified in [2] [3],
monitoring parameters may change frequently and the particular
context determines how to best solve a monitoring task, e.g., how
to structure a monitoring system in a distributed efficient manner;
and how to bound monitoring activities with respect to granularity
in time and in volume. Therefore, the monitoring concepts and
principles that are adopted in an autonomic network architecture
need to be open and support flexibility and adaptivity.

In this paper, we present the results of our requirements
analysis for monitoring in autonomic networking. One central
requirement is the need for a framework to dynamically configure
a distributed monitoring system in which an arbitrary number of
monitoring components gather data, and exchange, combine and
aggregate it to provide input to decision modules. The decision
modules in turn reason about the monitoring results and determine
how to control the network respectively a part of the network. We
call this complex process of gathering data, exchanging and
processing it information and knowledge management and present
its concepts that are supported in ANA. Information and
knowledge management enables an autonomic network to freely
configure distributed monitoring systems and we demonstrate this
by discussing how information and knowledge management can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
BIONETICS 2007, December 10-13, 2007, Budapest, Hungary.
Copyright 2007 ICST 978-963-9799-11-0

be used to establish a dynamic and adaptable monitoring solution
for a P2P overlay for video streaming.

Thus, the remainder of this paper is structured as follows: in
Section 2, we discuss the results of the requirements analysis. In
Section 3, we present an overview of the ANA concepts and
architecture. We describe in Section 4 the information and
knowledge management concepts. How monitoring is integrated
in the ANA architecture and a P2P video streaming example are
described in Section 5 followed by the concluding Section 6.

2. REQUIREMENTS ANALYSIS
In this section, we study the fundamental challenges for

monitoring that are introduced when supporting monitoring as
first class citizen in an autonomic network architecture [9],
followed by an analysis of more general problems and
requirements for monitoring. We conclude this section by
introducing those concepts that need to be supported in the ANA
architecture in order to address the previously identified
problems.

2.1 Fundamental Challenges for Monitoring
Existing monitoring solutions rely on a priori knowledge

during their design and implementation phase. For example, the
designer knows which monitoring task needs to be performed,
which data types need to be supported, which interfaces and
services are available, the generic network topology, the
approximate amount of data that has to be handled, etc. Such a
priori knowledge is not available for monitoring principles that
are to be integrated as first class citizens in an autonomic network
architecture. The invocation time, the execution lifetime, the
dynamics and the monitoring requirements of all possible
automated tasks in an autonomic network are unknown at the
architectural level and often only available at run-time.
Depending on the particular autonomic tasks, the monitoring
needs vary in terms of the monitoring points, the target interfaces
for monitoring and the monitoring behavior(s), services or tasks to
be in place or to be triggered on those points, the invocation time
of the monitoring behavior and its execution lifetime. Some
automated tasks such as an automated troubleshooting or fault-
diagnosis task may be triggered by events such as failures
detected at some point and time in the network. Such an
automated task may therefore require that some monitoring
services/ behaviors be in place/active at some point(s) and
interface(s) in the network or that if not active, be activated. All
such varying needs and dynamics of diverse automated tasks
impose some design and operational requirements on monitoring
facilities (components and platforms) of a self-managing network,
like the need to explore the interfaces and services that are
available and which data types are supported through information
and knowledge management, and dynamic and programmable
monitoring to be able to change the configuration and behavior of
monitoring services (see Section 4.3).

2.2 Generic Design Guidelines
The diverse monitoring requirements imposed on monitoring

facilities of a self-managing network by automated tasks, require
us to find design and operational principles of monitoring
components/tasks that satisfy identified requirements. The sub-

sections below provide an insight on such design and operational
principles of monitoring components.

2.2.1 Cope with Change
While monitoring requirements vary from one automated

task to another one, these requirements may also change in time
within a given automated task.

For example, a monitoring system wants to monitor network
traffic for security analysis. Depending on the threat level, more
detailed information (or less detailed) is captured and analyzed.
That means, if no danger is reported, only traffic volume data is
captured, as soon as there is an indication of a threat or attack, the
monitoring system will automatically capture more traffic
statistics and may start capturing data packets or flow
information.

Similarly, the monitoring system may be built on sampled
flow information. The system will sample traffic data at a given
rate and only on demand, the sampling rate is decreased (e.g.,
from 1 out of 1000 to 1 out of 50) such that more fine-grained
network data is available.

2.2.2 Distributed Monitoring
Many automated tasks would require or at least benefit from

several viewpoints provided by the monitoring services. Having a
number of perspectives provided by monitoring in multiple
locations enables wider situation awareness. To this end, we
would need distributed monitoring where participant efforts are
coordinated and orchestrated. Such a cooperative system makes it
possible to correlate events of interest between locations, for
instance. The P2P video streaming scenario in Section 5.3 gives
an insight on the need for distributed monitoring services.

2.2.3 Intelligent Use of Resources
As in any context, economic usage, resources and resource

sharing, opportunistic resource usage and allocation are important
also in monitoring context. Certain monitoring tasks can produce
a lot of data and other consume significant amount of processing
power.

In order to mitigate the problem of resource demands (e.g.
storage capacity for monitoring data and processing power) on a
monitoring component, e.g., a monitoring probe/ sensor / system,
it is wise to have the necessary monitoring task(s), and only those
tasks, invoked only when monitoring is required, otherwise
resources on the node may be used opportunistically for
something else because, its not only monitoring that requires
resources. This and the need to support the notion of monitoring
requests, behavior specifications from automated tasks (local and
remote), and the execution of requested monitoring behaviors,
entails that certain design principles must be followed when
designing monitoring tasks of a monitoring component.

2.2.4 Avoid Active Measurements
In the current Internet, monitoring tools apply active and

passive measurement techniques. Passive monitoring captures
system parameters, e.g., traffic volume and flow counts. Active
monitoring implies the interaction with the system, e.g., traffic,
such as probing packet pairs, is injected into the network and
captured at a destination node for measurement purposes.

With the current Internet architecture, many metrics can only
be measured with the help of active measurements because
elements of the Internet architecture do not expose enough (hardly
any) information about themselves and their current state to other
elements.

Active measurements are not preferable for two reasons:
scalability and accuracy. Topology discovery is a good example
of why active measurements do not scale well: Performing
exhaustive active measurements with the well-known tool
traceroute in order to discover the Internet’s topology on a global
scale is not doable. However, if we were able to passively collect,
aggregate, and distribute routing table entries, this would enable
the construction of accurate topology maps.

As for accuracy, bandwidth measurements, primarily done
with active measurement tools that inject probing packets into the
network [12], provide estimates of end-to-end capacity and
available bandwidth while we could accurately obtain such
information if the elements on the path (e.g. routers and switches)
would passively measure and then expose these metrics.

2.2.5 Allow Retrospective Analysis
Analysis of historical monitoring data is necessary in order

to identify trends or “go back in time” to understand reasons for
certain events [5] [6]. For example, resilient systems should be
able to diagnose the faults by looking at historical data, e.g. traffic
traces after a successful attack, in order to improve the system
design.

2.3 Monitoring Concepts
Based on the challenges and guidelines presented in Sections

2.1 and 2.2, we discuss in this section the necessary concepts that
we believe a successful monitoring architecture of an autonomic
network architecture should support.

2.3.1 Dynamic, Adaptive, Programmable Monitoring
The monitoring tasks of a component should be designed in

such a way that each task or a group of tasks can be triggered or
invoked on-demand: A monitoring request issued by an
automated task triggers the monitoring task. To this end, the
monitoring component needs to support certain parameterized
primitives, such as start (task-behavior-spec, Time-To-Live),
pause (task-id), resume (task-id), refresh (task-id, new Time-To-
Live), modify (task-id, new parameters), and terminate (task-id),
where task-ids are created and communicated by the component.
This type of dynamic monitoring enables establishment of
monitoring tasks in unpredictable locations when the need arises.
Furthermore, by supporting the above kind of primitives,
intelligent use of resources can be ensured. Resources can be
freed whenever monitoring is temporarily not required or no
longer required. In addition, a component should check whether
resources are available to satisfy the requirements expressed in
the request and perform admission control on monitoring
requests. It must also ensure that additional behaviors are not
unnecessarily started by inspecting whether a particular
monitoring behavior could be shared by a several tasks.

While the ability to dynamically establish, suspend, and tear
down monitoring tasks is necessary, the monitoring framework
should be designed also to adapt to changes within monitoring

tasks. A particular monitoring task should adapt to both
unexpected and expected events, and to changing resource
availability. If for example, additional information is required to
detect traffic anomalies, the data capturing is updated “on-the-
fly”. To limit the resource consumption of the monitoring service,
the service must be able to self-adapt, e.g., by adapting the
capturing rate or by applying data sampling techniques.

Programmable monitoring components allow for the
specification of the behavior of a monitoring task. This type of
functionality implicitly requires a description language for
specifying monitoring behavior(s). Such a language should
include the possibility to specify actions to be performed on the
target by the behavior, event-descriptions and event-notification
propagations to designated parties, including actions to be
performed by notification recipients, etc.

Dynamic, adaptive, and programmable monitoring is one of
the key concepts in the monitoring framework for autonomic
networks. These three properties makes it possible in principle to
establish required monitoring services, be it of any kind, at any
necessary place and time. Furthermore, these tasks are automated
as they adjust themselves to the specific environment. These
properties are vital for the concept that we discuss next, the
monitoring compartment.

2.3.2 Monitoring Realm
In a self-managing network, monitoring information from

one single component is not sufficient for supervision tasks that
cover a large partition or a whole network. That is why the ability
to perform distributed monitoring tasks is necessary. We call a set
of components that cooperate with each other for a common
objective (a specific monitoring task), a monitoring realm.

There must be component that orchestrates and coordinates
the efforts of such a monitoring realm. Note that this orchestration
could be performed in a completely distributed fashion by the
components themselves or by a central component. To form a
monitoring realm, the coordinating components have to be aware
of the monitoring capabilities of the nodes in the realm and must
be able to locate the monitoring point of interest in the topology.

The monitoring realm should be dynamic and adaptive itself
which means that such realms should be able to be created on-
demand and they should react to changing needs. These realms
should also be able to self-optimize by relocating monitoring
services from a component to another and adding services to new
components, for instance. Given that monitoring components
support the concept of dynamic, adaptive, and programmable
monitoring, it is possible to add new components to a particular
monitoring realm and specify and invoke monitoring tasks on
them whenever and wherever necessary.

2.3.3 Information and Knowledge Management
We have discussed the requirements for monitoring to enable

an autonomic network to sense its operating environment and to
monitor its state. However, achieving self-* properties requires
more than just acquiring raw data about the operating
environment and state. This data has to be used, i.e., transformed
to information and knowledge to be applied to achieve these
properties. For instance, self-configuration requires that an entity
knows its configuration, that it knows the components and

resources which are available for potential addition, and that it
can reason about the impact of configuration changes.
Furthermore, self-healing requires that a system is able to define
or to learn what the normal condition is and compare it with
monitoring results in order to recognize deviations from the
normal condition. The capacity to proactively circumvent issues
that could cause service disruptions means that the system must
be able to perform a retrospective analysis after a service
disruption, i.e., to study data from the past in order to identify
which sequence of events might lead to a service disruption.

In many cases a single source of data and information is not
sufficient. Hence, we introduced earlier the concept of a
monitoring compartment for distributed monitoring. However,
simply collecting monitoring data in various locations is not
sufficient. This is because of the fundamental property of
autonomic networks of not having any a-priori knowledge about
the environment in which a particular node/host or simply a task
integrates itself. The unknown environment can be a network
instance for a node/host but also the node/host itself for a task.
Therefore, it is necessary to develop proper abstractions for
providing and sharing the information between entities. This
information can be derived from monitoring data or it is part of a
description of an entity. Such a description could be a service
description, but it could also be the description of the entities
configuration, description of available components, description
about available resources, etc. Furthermore, the architecture
should provide means to persistently store data and information,
because for certain tasks, like the retrospective analysis in self-
healing it is necessary to study historical data, as we have
discussed earlier. We discuss in detail the way we handle
information and knowledge management in ANA in Section 4.2.

3. ANA ARCHITECTURE AND CONCEPTS
The Autonomic Network Architecture (ANA) project [1] has the
goal to explore novel ways of designing and building networks
beyond legacy Internet technology. The specific objective is to
provide a meta-architecture that allows the inter-networking
between different types of networks. As a result, ANA encompasses
the concept of Compartments as a key abstraction that allows co-
existence and inter-working of different types of network through a
minimum generic interface. Furthermore, the operation of different
types of compartments must be analyzed in order to identify the
fundamental building blocks of the abstraction. The de-composition
of compartments into the core tasks helps to understand how the
necessary flexibility (functional scalability) to provide autonomicity
can be achieved through compartments.
A second core building block of ANA is the Functional Block (FB).
FBs are code instances and state that can process (send, receive,
forward, etc.) information. Typically, the communicating entities of
a compartment are represented in ANA through FBs. They
implement the functionality that is required to interact with the
compartment and communicate within the compartment. As such,
the FBs can also be regarded as the processing elements or tasks
hosted by an ANA node that constitute the compartment stack.
Communication inside a compartment is mediated via Information
Channels (ICs). In order to connect FBs and ICs in a flexible
manner, the ANA framework introduces Information Dispatch
Points (IDPs). IDPs are bound to FBs or ICs, and hence provide a
decoupled access to the FB or IC. This decoupling allows dynamic
and transparent re-binding of ANA entities.

In the context of the ANA node architecture, monitoring is
implemented as a generic FB, the Monitoring Functional Block
(MFB). When other FBs require monitoring information for their
decision processes, the MFB initiates and orchestrates the data
collection and distribution of monitoring results. Note that in
Section 5, we describe more specifically how monitoring is
integrated in the ANA node architecture.
In Section 2.2, we introduced the concept of monitoring realms. In
the ANA context, such monitoring realms are implemented as
network compartment. A Network Compartment is a compartment
that encompasses several ANA nodes and involves communication
across an underlying network infrastructure. Like for any
compartment, a network compartment consists of a policed set of
FBs, ICs, and IDPs. In case of a monitoring compartment, the MFBs
providing the compartment’s monitoring capabilities are located on
multiple distributed ANA nodes. Note that monitoring
compartments may also span over multiple network compartments.

4. INFORMATION AND KNOWLEDGE
MANAGEMENT
In this section, we describe the general information and knowledge
management concepts needed for autonomic networks and how we
use them in ANA.

4.1 Information Hook
An information flow includes at least two functional blocks, of
which one has the role as information provider and the other as
information consumer (respectively decision maker). The
information provider is the entity that could provide the
information about which data it can provide and how it could be
used. Thus, the information provider needs to provide a self-
descriptive interface. This interface would serve as a hook to
which the consumer can connect and exploit how to make use of
the data. Such a hook should exist in each element of the
autonomic network architecture. This information hook needs to
have two main properties:
(1) Unified generic interface: The hook needs to have a unified
interface so that each entity in the autonomic network knows how
to access it. Otherwise, information flow establishment is
impossible. The interface needs to be generic and as simple as
possible. In this way, the interface can be used in an extensible
way: Imagine a simple interface that provides by request a more
complex interface more specific to the particular information
hook.
(2) Self-describing: The hook needs to be able to describe what
kind of information it can provide. In this way, any entity can
query the information hook of a particular entity in order to learn
if that entity can provide the information that it needs. Without
such a capability, the abstraction of providing information and
sharing information between entities becomes pointless. The
information flow architecture needs to consider what kind of
syntax and semantics the descriptions should have.
An autonomic network has to provide a new architecture for data
transfer. Instead of providing a fixed network stack for
communication, the required functional blocks are combined into
a function chain on demand. The elements which can be
composed, i.e., FBs, can consist of whole protocol functionality
(e.g. TCP, UDP) or may provide only micro-protocol functions,
like error control or encryption. Information processing itself is
done by FBs and is therefore not part of the information flow
framework, even if it is using information flows. For example, a

monitoring FB that computes some aggregate metrics by
combining several monitoring information flows is not an
information flow itself, but it uses information flows to implement
a specific kind of monitoring service.
Each entity that supports the information flow concept
implements an information hook. This hook provides a
description of the entity. The content, format, etc. of the
description depends entirely on the entity itself, but the minimal
mandatory description may be specified within the policies of a
particular realm.

4.2 Information Hooks in ANA
An information hook has to be generic and self-describing. A
generic hook allows in principle any ANA entity to access and
request a description of any other entity having an information
hook. As a consequence, the generic hook is kept minimal: it
provides access to the description of the entity. This description
provides information about how to interact with the entity bearing
that hook, i.e. in essence a description of its interface. The
element accessing the hook would then learn what information
and services the entity bearing that hook can provide and how
they can be accessed, because the entity description comprises a
description of the semantics of the functions, i.e., what they do,
and the syntax of the functions, i.e., how to properly invoke them
with the correct parameters, etc.
The question which language and tools to use for entity
descriptions to (a) describe the functions and (b) interpret these
descriptions is not part of the generic information hook. Instead it
must be determined/standardized for a particular ANA
compartment. An example for possible language and tool that
might be used for the syntactical aspects of functions is the
Interface Definition Language (IDL) [11] and a kind of stub
compiler to generate the two procedures for external
representation handling. To describe the semantics of functions
and their parameters, a combination of the Resource Description
Format (RDF) [10] and XML [8] as it is proposed in [7] could be
used.

Figure 1: Accessing interfaces of Functional Blocks

Each ANA entity has a unique identifier within a compartment.
This identifier can be used to access the information hook in order
to get a description of that entity, i.e., the get_description()
function corresponding to a specific identifier is called. Such a
procedure is often the starting point of communication. For
example, a FB would like to get certain information from another
FB whose identifier it has resolved. It may be that the requesting
FB does not know how to access the information or does not even
know whether such information is provided by the other FB. In
such a case, the first step for the requesting FB is to invoke the
get_description() function corresponding to the resolved
identifier.
The information hook is composed of two functions:
get_description() and send_description(). Get_description()
returns the entity description by invoking send_description().
After receiving the description, the requesting element knows

how to interact with the other element. Thus, afterwards the
interaction happens through the element specific interface, as
illustrated in Figure 1. The entity description type is mandated by
the compartment policies, which ensures that the receiving
element is able to interpret the description.

4.3 Information Hooks for Monitoring
The monitoring framework is tightly coupled with the information
and knowledge management framework. The main goal of
information flows is to provide a principal concept for autonomic
networks to enable entities to exchange information in order to
use it for decision making. One of the key concepts of the
information flow architecture is the information hook that is
implemented by each ANA FB and IC. This hook provides a
description of the entity bearing that hook, e.g., a FB. By
interpreting the description another entity learns how to interact
with that FB and what information it can provide.
Usage of information hooks and monitoring are intertwined: On
one hand, MFBs use the information hooks of the other FBs
residing in the node in order to collect information about potential
monitored data exposed by the FBs. In this way, the MFB also
build up (parts) of its own description that can be obtained via its
information hook. On the other hand, the description of a
composed FB (or an IC which is in fact a composed FB) can be
maintained using monitoring services in the following way. If a
composed FB chooses not to expose its internal structure through
the information hook, it must then collect relevant information of
the internal FBs and present it in a consistent way via its
information hook. MFB within the composed FB can be requested
to coordinate this collection procedure as monitoring tasks.
Figure 2 illustrates the usage of information hooks in the
monitoring architecture. It should be possible to query the MFB
through an information hook the services it currently provides or
is capable of providing. In addition, the FB that implements
monitoring storage should provide a hook as well through which
it is possible to learn its properties, i.e. what type of storage
systems can it support, which data models it supports, etc.

Figure 2: Information hook in monitoring architecture

5. MONITORING IN ANA
In this section, we explain the monitoring concepts that we use in
ANA.

5.1 Monitoring in the ANA Node Architecture
Figure 3 shows the ANA node architecture from the monitoring
perspective. The MFB triggers the capturing of information. This
FB is also used to request information. Monitoring storage is used
to store the collected data. This block may be located in the node
itself or maybe attached to it in an external device or virtual
device (P2P approach). The "conceptual" membership database
within a node compartment stores information about locally

available functionality and services, including access to other
compartments and sibling applications. The MFB checks from
that "database" what FBs are present in the node and establish
necessary IC to them (via IDPs) through the resolution process.
Then MFB would then query the information hook of those FBs
to find out what information it can obtain and how, and then
collect the necessary information. This process can be used to
establish also the description of available monitoring services that
a particular MFB can provide, i.e., (part of) the service
description obtainable from the MFB's information hook.

Figure 3: ANA node architecture for monitoring

Each FB provides a service description, i.e., it announces the
parameters it provides to the MFB. Via the information hooks, the
MFB is then capable of reading the to-be-monitored parameters,
processing the collected data, and sharing the results with other
MFBs or FBs. Also, the MFB may request a specific FB to expose
information.
From a design point of view, specific monitoring tasks such as
tasks for traffic monitoring/capturing/filtering/ analyzing;
functions for storing, managing and disseminating monitoring
data; functions for detecting events occurring internally and
externally to the system etc. may need to be placed into separate
inter-working functional blocks dedicated to providing specific
monitoring services.

5.2 Monitoring Compartment in ANA
The monitoring compartment in ANA is a set of MFBs that
cooperate and join in their monitoring efforts. In the next section
we show one possible form of such a monitoring compartment in
ANA. In that example the orchestration is decentralized in the
sense that there is no central component that manages the MFBs.
Instead, each MFB may choose to trigger monitoring services to
be executed by other MFBs.

5.3 Example Scenario
In this section, we describe an example application scenario for
ANA and show how the monitoring part of the architecture can be
used in this scenario. Our example application is P2P-based
Video-on-Demand streaming.
The term content distribution network (CDN) covers many
different ways of moving data between computers. There are
three main categories. The first is downloading based, where
content is accessed only after having been completely
downloaded. The second is broadcast based, where all receivers
receive the same data more or less simultaneously. The third is
CoD (Content-on-Demand) based streaming, where data is

accessed as it is being received. Content is typically located in
one of two ways; the identifier based approach used on the
WWW, and the message digest based file identification used for
file sharing in many P2P networks.
Content distribution using P2P technologies is a very promising
application domain. We use here P2P-based Video-on-Demand
(VoD) streaming as an example. VoD streaming is a service with
high resource requirements, because video files are usually large
and need to be delivered in a timely manner. Thus, high bit rates
are needed for the duration of the video, which could be up to
several hours. In order to efficiently deploy a large scale VoD
system, end user resources can be utilized in a P2P fashion.
However, such a solution requires prompt and detailed
information about the network.
Content is organized in files, which are logically divided into
blocks, and these blocks can be retrieved from any peer which
already has a copy. Client applications are responsible for
requesting blocks in a timely fashion, and presenting the video to
the user.
We view the set of FBs in various nodes as a compartment that
forms the P2P overlay for VoD services. These FBs are such that
wish to participate in distributing the particular video content. In
this example scenario, communication, i.e. the distribution of
content, within the overlay compartment is optimized according to
specific criteria. The overlay should be optimized so that overall the
bandwidth is optimally utilized among the nodes. As ANA
architecture is autonomic, the overlay is able to self-configure and
self-optimize. Ideally, the application only needs to specify the
content and then issue requests for blocks to a handle (in an anycast
style) that it gets from the underlying ANA, which takes care of all
the rest. For instance, the application does not necessarily need to
know which node to contact.
Figure 4 shows the way monitoring services could be used in this
scenario. The MFBs of individual nodes that monitor the
available bandwidth to surrounding nodes form a monitoring
compartment. We assume that each of the members of that
compartment knows the neighboring members, i.e., adjacent
nodes which belong to that monitoring compartment and to which
the data path does not pass through another member node. We say
that these neighboring nodes form the vicinity of the MFB.
Monitoring services are first invoked within the MFB of the
downloading node, node 1. This triggering could be done, e.g. by
the overlay FB or another FB that is concerned about the self-
optimization in that node. The task is to monitor available
bandwidth on the paths from that node to nodes 2-6 that contain
blocks that the application would like to download. The MFB
starts to monitor the available bandwidth on the link to the next
node in the vicinity and establishes an IC to the MFB of that next
node in order to receive similar monitoring information from that
node. Similar monitoring tasks are thus dynamically started in
that MFB and new ICs established to the MFBs of the next nodes
in the vicinity towards the final destinations (nodes 2-6). This
behavior continues until the entire paths to the nodes 2-6 are
covered. After that, monitoring information flows through the
channels all the way to node 1. The information is aggregated
along the way in the intermediate nodes, i.e., nodes always report
minimum available link bandwidth along the path to a given node.
As can be seen in top-right part of the figure, sometimes the
adjacent nodes do not belong to the monitoring compartment. In

Figure 4: Monitoring in P2P VoD streaming scenario

that case, it is naturally not sufficient that node j in the figure only
monitors link bandwidth to the next node. In such a case, given
that MFBs within nodes support the concept of dynamic and
programmable monitoring, the MFB in node j could invite the
MFB of the next node join the monitoring compartment by
specifying and invoking the bandwidth monitoring task for that
MFB. The newly joined MFB would then in turn make the MFB
in the other intermediate node join as well. As an alternate
approach, if the intermediate nodes do not support monitoring of
their link bandwidth, node j could perform active probing towards
node 2 in order to determine the available bandwidth to the whole
remainder of the path.
In this scenario, monitoring of available bandwidth along a set of
paths is required. In the Internet today, such monitoring can be
only performed via active end-to-end probing. In ANA, the ideal
case from the monitoring information timeliness and accuracy
point of view is to be able to receive such information from each
intermediate hop along a given path. However, it may be that not
all nodes along the path provide such monitoring services
initially. In such a case the MFBs of such nodes could be
integrated into the monitoring compartment by making a request
and describing to them how to perform the needed monitoring
tasks.
The scenario described requires having dynamic and adaptive
monitoring services that can be started and stopped on demand.
Only certain nodes need to perform monitoring of available
bandwidth while other nodes save their resources. It is especially
important when the available bandwidth needs to be estimated
through active probing that can potentially create a significant
extra load to the network.
The example pointed out also another important aspect: the
usefulness of programmability of monitoring services. In this
way, nodes could request and instruct other nodes to join a

particular monitoring compartment. It should also be possible for
a node to learn which monitoring capabilities another node may
have.

6. CONCLUSIONS
In the ANA Project, we design a new autonomic network
architecture from scratch with monitoring as a first class citizen in
the architecture. The fact that monitoring is considered as a
fundamental element in the architecture introduces a new set of
challenges for monitoring at this abstraction level. The main reason
for this is that no a priori knowledge is available for monitoring
concepts in the architecture. Therefore, monitoring needs to be able
to dynamically explore the environment in which it should work and
monitoring elements should be dynamically composable in such a
way that distributed monitoring realms can be created on the fly. In
order to achieve this, the ANA architecture provides the concept of
information hooks in the information and knowledge management
framework. Furthermore, monitoring needs to flexible and
programmable to dynamically address the given tasks.
It is the contribution of this paper to provide an analysis of these
new requirements and a discussion how they can be supported in the
ANA architecture with different concepts and how these concepts
inter-work. We use the example of a monitoring compartment for
P2P video on demand streaming to explain the idea behind our
proposal for monitoring in ANA and as a kind of a first conceptual
validation of the presented monitoring approach.
So far, the presented results are at the conceptual and architectural
level. Therefore, many research challenges have to be solved to
implement and validate these concepts. For example, the dynamics
and varying monitoring needs of envisaged automated tasks meant
for self-managing networks impose some design and operational
requirements on the monitoring facilities (component, functions,
and platforms) of a self-managing network. Capturing and

specifying those requirements along with finding and designing
suitable monitoring paradigms/frameworks, is not a trivial issue.

7. ACKNOWLEDGMENTS
This research has been performed in the ANA project No. FP6-
IST-27489, funded by the EU 6th Framework Programme,
Situated and Autonomic Communications (SAC).

8. REFERENCES
[1] ANA (Autonomic Network Architecture) Project:

http://www.ana-project.org.
[2] R. Boutaba, J. Xiao, Self-Managing Networks, in: Cognitive

Networks, J. Wiley & Sons, 2007
[3] M. Crovella, B. Krishnamurthy, Internet Measurement:

Infrastructure, Traffic and Applications, J. Wiley & Sons,
Inc., 2006

[4] B. Jacob, R. Lanyon-Hogg, D.K. Nadgir, A.F. Yassin, A
Practical Guide to the IBM, Autonomic Computing Toolkit
(Book Title), IBM Corporation, April 2004

[5] F. Reiss, J.M. Hellerstein, Declarative Network Monitoring
with an Underprovisioned Query Processor, ICDE ’06: Proc.
of the 22nd Int. IEEE Conf. on Data Engineering (ICDE’06),
Washington (USA), 2006

[6] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, R. Sommer,
Building a Time Machine for Efficient Recording and
Retrieval of High-Volume Network Traffic. 2005.
Proceedings of 5th ACM SIGCOMM conference on Internet
Measurement (IMC '05), Berkeley (USA), Oct. 2005, ACM
Press

[7] J. van der Ham, F. Dijkstra, F. Travostino, H. Andree, C. de
Laat, Using RDF to Describe Networks, Future Generation
Computer Systems, Feature topic iGrid 2005,2006

[8] D. Beckett,B. McBride,RDF/XML Syntax Specification,
February 2004,http://www.w3.org/TR/rdf-syntax-grammar/

[9] R. Mortier, E. Kiciman, Autonomic Network Management:
Some Pragmatic Considerations, Proc. of ACM SIGCOMM
workshop on Internet Management, Piza (Italy), 2006

[10] Resource Description Framework (RDF), URL
http://www.w3.org/RDF/

[11] Specification of OMG IDL. http://www.omg.org/cgi-
bin/doc?formal/02-06-39

[12] G. Varghese, C. Estan, The Measurement Manifesto, ACM
SIGCOMM Computer Communications Review, Vol. 34,
No. 1, Jan. 2004, pp. 9-14

