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Introduction

This lecture is about some of the basics of uncertainty: the use of variances and covari-
ances to express statistical uncertainty (“error bars”, error ellipses); we are concentrating
on the uncertainties of geographic co-ordinates. This makes it necessary to talk about
geodetic datums — alternative ways of fixing the starting point(s) used for fixing geodetic
co-ordinates in a network solution. It also makes it desirable to discuss absolute (single
point) and relative (between pairs of points) co-ordinates and their uncertainties.

We follow up by discussing some more esoteric concepts; these sections are provided as
reading material, but we will discuss them only conceptually, to get the ideas across. The
learning objective of this is, that you will not be completely surprised if in future work,
these concepts turn up; you will be somewhat prepared to read up on these subjects and
use them in your work. The subjects are (in blue):

1. Criterion matrices for modelling spatial variance structures

2. Stochastic processes as a means of modelling time series behaviour statistically;
signal and noise processes

3. Some even more esoteric subjects:

a) Statistical testing and its philosophical backgrounds
b) Bayesian inference

c¢) Inter-model comparisons by information theoretic methods, the AKAIKE in-
formation criterion.



Contents

1 Uncertainty expressed in variances and covariances| 4
M1 Definitions . . ... ... ..., 4
1.2 Variances and covariances . . . . . . . ... ... 5
(1.3 Error propagation| . ... ... .......... 7
(1.4 Co-ordinates, point errors, error ellipses| . . . . . 8
1.5 Absolute and relative variances/ . . . . . . .. .. 10
(1.6 Lifting point variances from a big variance matrix | 11

2 Relative location error by error propagation| 11
2.1 Description| . . . . . ... ... ... ... ... 11
2.2 Example (1) . ... .. ... .. .. .. ..., 12
2.3 Example (2): uncertainty in surface area from |

| uncertain edge co-ordinates|. . . . . .. ... .. 12

I3 Co-ordinate uncertainty, datum and S-transformation| 14
(3.1 What is a datum? Levelling network example|. . 14
3.2  Datum transformations |. . . . . ... ... ... 16
3.3 2Dexample| . ... ... ... ... ... .... 16
3.4 What is an S-transformation? .. ... ... .. 17

4 Modelling location uncertainty by criterion matrices| 17
4.1 About absolute and relative precision| . . . . . . 17
4.2 Precision in ppm and in m/viem | . ... L. L L. 17
4.3 Modelling spatial uncertainty behaviour by crite- |

I rion matrices| . . . . ... ... ... ... ... 18

1 The modelling of signals| 18
0.1 Introductionl . ... ... ............. 18
5.2 Stochastic processes| . . . . . ... .. ... ... 19
0.3 Covariance functionl . . . .. ... ... ..... 20
9.4 Least-squares collocation| . . . .. ... ... .. 21
5.5 Semi-variances and kriging| . . . ... ... ... 23




9.6  Markov processes|

6 Modern approaches in statistics|

0.1 Statistical testing]

6.2 Philosophical background of statistical testing .

0.3 Bayesian inference|

24

28
28
29
31
32



1 Uncertainty expressed in variances and covariances

In this text we discuss uncertainty as approached by physical geoscientists, which differs

somewhat from approaches more commonly found in geoinformatics [Devillers and Jeansoulin, 2006},
e.g.]. Central concepts are variances and covariances — the variance-covariance matrix —

especially of location information in the form of co-ordinates. We shall elaborate in the

chapters that follow.

1.1 Definitions

We can describe statistical uncertainty about the value of a quantity, its random vari-
ation when it is observed again and again, by its variance. Similarly, we can describe
the tendency of two quantities to vary randomly in somewhat the same way, as their
covariance.

A stochastic quantity (random variate) is a method to produce realizations of a phys-
ical quantity. The number of realizations is in principle unlimited. E.g., throwing a
die produces one realization of a stochastic process defined on the discrete domain
{1,2,3,4,5,6}. Throwing a coin similarly is defined on the discrete domain {0, 1}, where
heads is 0, tails 1.

In spatial information, stochastic quantities typically exist on a continuous domain, e.g.,
the real numbers R. E.g. measure a distance d € R. The measurements are dy, d2,ds, . ..
and the stochastic quantity is called d (underline).

A stochastic quantity has one more property: a probability (density) distibution. When
doing a finite set of measurements, one can construct a histogram from those measure-
ments.

E(z)

| |
—oH-o!
1 1

Few observations... more observations... theoretical limit

Now when the number of measurements increases, the histogram will become more and
more detailed, and in the limit become a smooth function. This theoretical limiiﬂ is
called the stochastic quantity d’s probability density distribution function, distribution

"We cannot ever determine this function from the observations, only obtain approzimations to it, which
will become better, the more observations we have at our disposal. In practice we postulate some
form for the distribution function, e.g., the Gaussian or normal distribution, in which there are two
free parameters: the expectancy p and the mean error or standard deviation o. These parameters
are then estimated from our data.



function for short. It is written as p (x), where x is an element of the domain of d (i.e.,
in this case, a real number, a possible measurement value).

Just like the total probability of all possible discrete outcomes, y ;% p; = 1, so is also
the integral fj;op (z) dz = 1. The integral

/abp(:c)da:

again describes the probability of z lying within the interval [a,b]. If this probability is
0, we say that such an outcome is impossible; if it is 1, we say that it is certain.

A very common density distribution often foundE| when measured quantities contain
a large number of small, independent error contributions, is the normal or Gaussian
distribution (“bell curve”). It is the one depicted above titled “theoretical limit”. The
central axis of the curve corrsponds to the expectation F (z), the two inflection points
on the left and right slope (see Fig. [3) are at locations F (z) + o, where o is called the
mean error or standard deviation associated with this distribution curve. The broader
the curve, the larger the mean error.

1.2 Variances and covariances
Just like “distribution function” is the theoretical idealization of “histogram”, we also

define ezpectancy as the theoretical counterpart of mean/average value. If we have a set
of measurements x;,7 = 1,...,n, the mean is computed as

1
T = — E Zi.
n

i=1

Within this set, 1/n is the empirical probability, p;, for measurement value z; to occur
if picked at random out of the set of n measurements (and note that » . ; p; = 1). So

we may write
n
T = Z DiT;-
i=1
Now the theoretical idealization of this is an integral:
(o)
Elg}= [ ap(a)ds, 1)
—0oQ
This is the expectancy, or expected value, of z; the centre of gravity of the distribution

function. It is the value to which the average will tend for larger and larger numbers of
measurements.

2In fact, often when the amount of data is too small to clearly establish what the distribution function
is, a normal distribution is routinely assumed, because it occurs so commonly (and is thus likely to
be a correct guess), and because it has nice mathematical properties.
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Figure 1: Different types of random error in a stochastic variable on R?. Left, small
random error; middle, large random error. The picture on the right shows
correlation between the horizontal and vertical random variables, both on R.

Now defining variances and covariances is easy. Let us have a real stochastic variable x
with distribution p (z). Then its variance is

Var {z} = E{(x - E{z})’}.
It describes, to first order, the amount of “spread”, or dispersion, of the quantity around
its own expected value, how much it is expected to deviate from this value.

Covariances are defined for two stochastic variables, z and y:

Cov (z,y) = E{(z — E{z}) (y — E{y})}-

It describes to what extent variables x and y “co-vary” randomly, in other words, how
likely it is, when z is bigger (or smaller) than its expected value, that then also the
corresponding realization of y will be.

Once we have the covariance, we can also define the correlation:
Cov {z,y}
\/Var {z} Var {g}

Correlation is covariance scaled relative to the variances of the two stochastic variables
considered. It is always in the range of [—1, 1], or [-100%, +100%)]. If the correlation is
negative, we say that z and y are anticorrelated.

Corr {g,g} =

Warning: correlation doesn’t prove causation! Or more precisely, correlation doesn’t
tell us anything about what is the cause and what is the effect. Typically, when
two stochastioc quantities correlate, it may be that one causes the other, that the
second causes the first, or that both have a common third cause. The correlation
as such proves nothing about this. However, sufficiently strong correlation (as
established by statistical testing) is accepted in science a proof of the existence of
a causal relationship.
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Figure 2: Examples of correlations and anticorrelations

1.3 Error propagation

The expectancy operator E[-] is linear. This means that, if v = az, then E{u} =
aFE {z} . This follows directly from the definition:

00 +oo

B = [ wwdi= [ " ap(e)de—aE o),
—00 — 00

because p (u) du = p (z) dz = dp refers to the same infinitesimal probability.

This propagation law can be extended to variances and covariances (with v = by):

Var {u} = a*Var{z},
Cov{u,v} = abCov {g,g}. (2)

If a stochastic variable is a linear combination of two variables, say, u = ax + by, we get
similarly (we also give the matric version):

Var {u} = a*Var{z}+b*Var {y} + 2ab Cov {z,y} =



- te o[ WP I]

Cov{u,v} = aC’ov{g,y}—}—bCov{g,y}:

- e[ Gfed ]

1.4 Co-ordinates, point errors, error ellipses

In spatial data, the quantities most often studied are co-ordinates of points on the
Earth’s surface. Spatial co-ordinates are typically three-dimensional; there is however
a large body of theory and geodetic practice connected with treating location or map
co-ordinates, which are two-dimensional. In this most common case we have co-ordinates
modelled as stochastic (random) variables on the domain R2.

We give a point location as a pair of co-ordinates (z,y). Typically these are map co-
ordinates, e.g., kkj, in some datum or co-ordinate reference system. As they are uncer-
tain, we write them as (g, g) For brevity we may also write:

x = (z,y)

indicating in one symbol both (generally: all three/one/two) co-ordinates. x € R2.

Now a given real world point co-ordinate pair will be uncertain. This means, it is
describable by a stochastic variable on the domain R?. Also, the probability density
distribution function p will then be a function of two real arguments, p (z,y) . See Fig.
depicting the two-dimensional Gaussian distribution.

Computing the variance of this two-dimensional quantity goes formally as follows:
Var{z} Cov{z,y} o1l 012
V = = ik =Yyx = .
ar {x} Cov {@,g} Var {g} xx O12 099
This is a symmetric matrix called the point variance matriz of the point x.

This variance matrix can be depicted by an ellipse in the plane: the error ellipse. In
Fig. [3| this error ellipse is depicted as the horizontal intersection curve of the Gaussian
probability surface with a plane at the level of its inflection point. In one dimension,
this corresponds to the two points at one standard deviation o away from the central
value, also at the inflection points of the curve.

The matrix Y4« defines an eigenvalue problem
(Exx — M) v =0;

this problem has two eigenvalues with associated eigenvectors. We find the eigenvalues
by
det [Xxx — AMI] =0,



Figure 3: A two-dimensional Gaussian distribution function (“tropical hat”). A cross-
section gives the uncertainty in a certain direction, its standard deviation cor-
responding to the intersections with the (one-sigma) error ellipse.
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Figure 4: Parameters of the error ellipse.

or written out:

(011 — A) (022 — A) — 0%2 =0,

a quadratic equation with two solutions Aj . These solutions are the principal azes of
the error ellipse, see the figure. The long semi-axis depicts the direction (eigenvector) of
greatest uncertainty; the short semi-axis, that of the smallest uncertaint

3For curiosity, we obtain for the eigenvalues

A1,2

1
5 [011 + o092 £ \/(011 +022)2 —4 (011022 — 052)} =

1
5 [011 + 022 £ \/(011 - 022)2 +4<7%2] =

1 1 ?
5 (011 + 022) = \/|:2 (011 — 0'22):| + 0t



We have for the sum of the eigenvalues:

M+ X2 =011+ 03 =0.40, =0p,
the point variance, a quantity describing the location precision of the point x in a co-
ordinate-independent (invariant) fashion. In older literature the symbol m%, is used for
this. See also the figure. We denote the mean error of z by o, = /o011, that of y by
oy = /022. Also here, older literature has m, and m,, respectively.

1.5 Absolute and relative variances

In a situation where we have several points in the plane, also the variance-covariance
matrix will become bigger. Also co-ordinates belonging to different points may have
nonzero covariances between them. E.g., if we have two points x; = (z1,%1) and xo =
(z2,y2), we have a variance-covariance matrix

Yvv =
Var {z1}  Cov{z1,y1} | Cov{zy, 22} Cov{zi,yo}
Cov{zi,yi} Var{y} |Cov{y,zs} Cov{yi,ys}
Cov{ﬂ,ﬂ} C’ov{xg,gﬂ} Var{ﬂ} Cov{@,yi}

Cov{yz,z1} Cov{ys,y1} | Cov{za,yo}  Var{ye}

and the long and short semi-axes of the ellipse are v/ A1, v/ Az.
Also the directions of the axes can be obtained: study the linear combination of co-ordinates

z(0) = zsinf + ycos¥,

which is a function of the direction angle 6.
According to propagation of variances we obtain

Var (z (0)) = 011 sin® 0 + 022 cos® 0 + 2sin 0 cos 0o12;

the axes of the ellipse are the stationary values of this function of 6,

%Var () =0.
Differentiate:
2sinfcosf (011 — 022) + 2 (c052 0 — sin? 0) Yi2=0
i.e.,
sin 20 (0'11 — 0'22) +2cos20-012 =0

and

1

0/ = = arctan (—20712> +k-90° =
2 011 — 022
= arctan | — g1z +k-90°,

o12 + \/[% (11 — 022)}2 +U%2

by using the half angle formula for the arc tangent. The integer k gives all the axes directions, which
are 90° apart.

10



Var {ﬁ} Cov {ﬁ, Q} | Bxixi Dxaxe
Cov {x1,x2}  Var{xy} N

X1X2 ZXQXQ
for the four-dimensional abstract vector
z1
. 1 . [ X1 ]
v=|—| =| — |.
€2 X2
Y2

This matrix is still symmetric. Note the “partitioned” way of writing this matrix.

1.6 Lifting point variances from a big variance matrix

Now looking at such a big matrix — and it can be much bigger! — we can simply lift the
2 x 2 matrix corresponding to a single point out of it, and it will be the point variance
matrix of that point.

E.g., lifting the top left sub-matrix out of the above matrix gives

Var{az1}  Cov{zi,y}
Cov{zi,;} Var{m} |’

the variance-covariance matrix of point x;, corresponding to that point’s error ellipse.

Var {1} =

2 Relative location error by error propagation

2.1 Description

Rather often we are interested, not in the absolute precision of the location of a point
X1, but rather in the relative location of that point in relation to another point xs. In
other words, the precision of the co-ordinate difference vector

ryp — T2
X1 — X9 = - - .
x|y

If we have the big matrix containing the two points x; and Xs, this problem is easy to
solve, using a generalized (matric) version of the law of propagation of variances:

Var {&—Q} = Var {ﬁ} + Var {ﬁ} — 2Cov {ﬁ,&} .

(If we write Var {z} — Cov{z,z}, the logic of the equation is even more obvious: we
have

Var{zy —ap} = Cov{zs —wy,11 — 12} =
= Cov{zy,z1} — Cov{zy,za} — Cov{zy w1} + Cov {3, 25},

11



as the covariance is by its definition linear in both arguments. This holds for 1, z2 being
simple real-valued variables but just as well for them being vectors. In that case the
variances and covariances become matrices.)

In this case we have to lift from the big matrix only three 2 x 2 sub-matrices. The two
covariance sub-matrices off the diagonal are identical (or rather, each other’s transpose),
so we need only one of them (in fact, it is wise to store only the upper triangle of the
big matrix, saving approx. half the storage space!)

2.2 Example (1)

Let us have a set of (many) points and associated co-ordinate variance-covariance matrix:

inxi e Exin
Var{v} = : : :

z)xixj T EXij

Now we are interested in the relative variance-covariance matrix, and the corresponding
relative error ellipse, between the two points x; and x;. We obtain it as

Var {&—ﬁ} = Var {&} + Var {ﬁ} — 2Cov {&,ﬁ}

2.3 Example (2): uncertainty in surface area from uncertain edge
co-ordinates

This example is based on [van Oort, 2005] section 5.1.2, where the uncertainty in surface
area of a parcel of land (described by a closed polygon) is expressed in the uncertainties
of the edge node locations, as part of estimating the uncertainty in the value of the
parcel.

We approach the problem as follows: express the surface area in node co-ordinates using
the Gauss triangular equation:

1 n
A= 5 z;fﬂz [Yit1 — Yi-1] -
1=

Here, it is assumed that ¢ = 0,1,2,...,n — 1,n is circular, so that point n is the same
as point 0.

12



In preparation for formal error propagation, we must now linearize:

1 n
4 = 5 > (i1 — vi] dwi + zidyigs — zidy; 1) =
i=1

1 n
= 3 Z ([Wi+1 = Yi-1] dzi + [2io1 — Tiga] dyi)
i=1
cleverly circularly renumbering the indices in the final two terms: (z;41 — x;, dy; — dy;—1)
and (z; — xiy1,dy;—1 — dy;), which doesn’t change the sum.

We now have to decide what uncertainties to assume for the co-ordinates x;,y; and
especially what correlations, or covariances, between x; and y; for the same node point,
and between z; and z;, and x; and y;, for different nodes.

In the dissertation referenced [van Oort, 2005], the following assumptions made are:

Var (z;) = o2

Var (y;) = O'Z;
Cov(zi,yi) = 0;
Cov (zj,z;) = 0if i # j;
Cov (z4,y;) = 0ifi#j.

Then, doing standard propagation of variances yields:
1 1
2
Var (A) = 1 D i1 —yialP s+ 1 > i —xia) oy,
i=1 i=1

This equation is a little simpler than Eq. (9) in Section 5 of [van Oort, 2005] (page 62),
because we have assumed (as we always do in geodesy!) that our co-ordinate uncer-
tainties are small compared to the co-ordinate values — and even co-ordinate differences
between the nodes of the polygon — themselves.

This approach can easily be generalized. Van Oort presents the case of multiple polygons
with common points, e.g., adjoining lots with a common border. Then one finds for
polygons p and q

2 (D p q q
» A 1 oA oz (Yiy — i) (%‘H - y]el) +
Couv (A7, A7) = gzz%% 2 (P P q q ’
i=1 j=1 +oy ($i+1 - f’fi—l) (xj—H - %’-1)
where
_ { 1 if point p; is the same as point g;
pig; =

0 otherwise ’

1. Note that in this formula, the same point occurs twice, first as p;, then as ¢;. That
explains the division by 8 instead of 4.

13



2. The above assumptions that

2, 05 are constants, and

b) Cov (z,z;) = Cov (y;,y;) =0

a) o

are probably unrealistic for points that are positioned during a single network
measurement session, as is likely the case. They will contain correlated co-ordinate
errors. A good approach to modelling these would be to construct a realistic
looking, synthetic criterion matriz, as we shall discuss in Section

3 Co-ordinate uncertainty, datum and S-transformation

3.1 What is a datum? Levelling network example

The old Finnish official height system N60 — now replaced by the newer N2000 — is based
on the height of a fixed point in the garden of the Astronomical Observatory in Helsinki.
This is a historical accident: Helsinki is the capital. It could just as well have been
Turku.

Though the national precise levelling networks, the heights of N60 have been extended
over all of Finland. Point height precisions therefore obviously will become poorer (i.e,
uncertainties, like mean errors, will increase) with increasing distance to Helsinki. Clearly
we know the height of Utsjoki poorer than that of Jyvéskyld — relative to Helsinki. The
height of Turku is also somewhat uncertain, because the measurements between Helsinki
and Turku were somewhat imprecise.

On the other hand are the heights of points close to Helsinki all very precisely known,
because the datum point, Helsinki Observatory, is so near.

Imagine for a moment that not Helsinki, but Turku were the capital, and that the
Finnish height datum point was the mark in the wall of Turku’s Cathedral. Then, all
points close to Turku would be known very precisely in height, but those points close to
Helsinki would be just as uncertain as in the present system, points close to Turku are:
measurements from Turku to Helsinki are not absolutely precise.

Precision depends on your point of view: the chosen datum.

14



3.394
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I Mean error 10 mm

The picture shows a levelling network of four points. Given are the levelled height
differences AB, BC, CD ja DA. Also given are the heights of coastal points A ja B
from mean sea level, as measured by a tide gauge.

Firstly, we adjust the loop:

Interval Observed Correction Adjusted

AB -0.925 -0.004 -0.929
BC +0.548 -0.004 +0.544
CD +0.321 -0.004 +0.317
DA +0.072 -0.004 +0.068

Closure error +0.016 -

Next, two alternative procedures:

1. Use point A as the fixed or starting point and calculate point heights (the mean
errors are made up, though realistic) :

Point Height Mean error

A 3.443 £0.000
B 2.514 £0.010
C 3.058 +0.014
D 3.375 £0.010

2. Same way but using point B for starting:

Point Height Mean error

B 2.533 £0.000
C 3.077 £0.010
D 3.394 +0.014
A 3.462 £0.010

15



A" Datum [AB]

Figure 5: A horizontal control network calculated in two different datums, the AB- and
the PQ-datum.

We see that in the latter case, all calculated heights are 0.019 m larger. The height
differences are the same in both cases.

The datum shift between the A datum and the B-datum is 0.019 m.

3.2 Datum transformations
3.3 2D example

Different datums exist also in two dimensions, in the plane for location co-ordinates. In
Fig. [pl are depicted an AB-datum and a PQ-datum, created by, in the calculation of the
network, keeping either the points A and B, or the points P and @ fixed to conventionally
adopted co-ordinate values. After that, the co-ordinates of the other points are calculated
relative to these (The calculation may involve a network adjustment).

As we see, we get different results for different adopted starting point pairs or datums.
Nevertheless the shapes of the network solutions look the same (and one can show that
the two are connected by a Helmert similarity transformation).

Again, the choice of the co-ordinates of the starting points is somewhat arbitrary and
conventional, a “formal truth”. Making such a choice means defining a new geodetic
datum.

Looking at the figure, you also see that the error ellipses change when choosing a different
datum. The datum points themselves are exact, because they were chose so; other points
are the more uncertain, the farther away they are from the datum points.

Also relative error ellipses are shown, on the lines between neighbouring points. As you
see, these are a lot less sensitive to the choice of datum points! We sometimes say that

16



relative variances (the quantities depicted by these ellipses) are (quasi-)invariant for
S-transformations.

3.4 What is an S-transformation?

An S-transformation is nothing but the similarity transformation that convert points
in one datum to another datum, based on other fixed points in the same network; i.e.,
a datum transformation. As the two datums are usually very close together, the S-
transformation for the co-ordinates will be close to unity. However, transforming point
variances and covariances is a little more complicated: it is a transformation of small
difference quantities and requires linearization. This transformation will not be close
to unity. The formulas involved are quite complex, even if we describe co-ordinates as
complex numbers as is common in flat geometry. We will therefore not present them.

4 Modelling location uncertainty by criterion matrices

4.1 About absolute and relative precision

Above we discussed absolute and relative variance-covariance matrices and error ellipses.
When modelling location uncertainty in spatial point sets, we are usually interested
most in the relative precision between neighbouring points. We want especially for this
precision to become better (smaller) the closer the points are together.

The reason for this is that, if points are close together and their relative location is
uncertain, they introduce deformations into any map or co-ordinate data set based on
them. Say, a relative position uncertainty of +10 cm is not too bad if points are 1000 km
apart; but if their distance is only 1 km, and they are both being used as the geometric
basis for a bridge construction project, bad things may happen. ..

4.2 Precision in ppm and in mm/\im

One can describe relative accuracy in a number of ways. Simplest is ppm (parts per
million, or mm/km).

Especially for levelling, but also, e.g., for GPS networks, the practice has been to express
precision in mm/\/km. This makes sense if the precision, or mean error, of a co-ordinate
difference between two points in a network grows in proportion to the square root of the
distance between the points.

For al levelling line, this holds: the variance of the height difference between start and
end points grows linearly with the distance, and thus the mean error with its square
root. So a four times longer line will have a twice poorer precision between end points.

17



Figure 6: Criterion error ellipses for a polygon.

4.3 Modelling spatial uncertainty behaviour by criterion matrices

Often we will want to model the uncertainty behaviour or variance structure of a point
field on the Earth’s surface, or a set of network points, in a simple and geometrically
realistic way, without however having access to — or wishing to use — the true variance-
covariance matrix of these points. In that case, one often uses criterion matrices, syn-
thetic covariance matrices designed to behave in this way.

In the figure is shown such a criterion variance structure of the ppm type in the case
of a polygon. Note that criterion matrices behave in the same way as “real” variance-
covariance matrices: they have error ellipses (in the figure’s example, circles), etc. They
also transform the same way under datum or S-transformations.

Often we use criterion matrices for testing or replacing real variance matrices. In both
cases one should demand that the real variance matrix lies completely inside the crite-
rion matrix, in some mathematically sensible senseﬂ Then also the true error ellipses
will lie completely inside the criterion ellipses/circles (and due to the above mentioned
transformation property, this property is invariant under datum transformations!)

This invariance is part of the generality which makes criterion matrices attractive for
describing the “goodness” of a network or empirically positioned point set on the Earth
surface. Co-ordinate precision measures will depend on the datum chosen, often quite
arbitrarily, to describe them in; satisfying a given criterion matrix model will be inde-
pendent of this choice.

5 The modelling of signals

5.1 Introduction

In the above, we have concentrated on the modelling of uncertainty as a property of
stochastic quantities. The stochastic quantities considered were either geodetic obser-

4A condition on the maximum eigenvalue of an eigenvalue problem; this means that the n-dimensional
hyper-ellipsoid of the criterion matrix completely encloses the corresponding hyper-ellipsoid of the
true variance-covariance matrix. Her, n is the total number of point co-ordinates.

18



> B Drawn: error ellipses
A" Datum [AB] Broken: criterion ellipses

Figure 7: True and criterion variance-covariance matrices: both are S-transformation in-
variant: if the variance-covariance matrix lies inside the criterin matrix, than
all error ellipses, absolute and relative, will lie inside their corresponding cri-
terion ellipses in all possible datums!

vations, or quantities derived from geodetic observations, such as point co-ordinates on
the Earth’s surface. The stochasticity in this case is that of the uncertain measurement
process: it is the stochasticity of observation noise, contamininating the quantities we
really wish to study.

However, there are in spatial information science also quantities that are intrinsically
stochastic, i.e., they can themselves be described as stochastic processes. As an example,
we may mention gravity anomalies on the Earth’s surface, who display a random-like
behaviour with location when depicted on a map. This is signal stochasticity. We don’t
want to eliminate or minimise it; we wish to study and model it as well as we can.

Another situation where signal stochasticity occurs, is in navigation, where we model the
randomness in the trajectory of a navigating vehicle or satellite by a stochastic process
of time. Here, concepts like Markov processes and linear predictive filtering come into
play. These techniques, while primarily designed for stochastic processes of time, can
often be generated to the spatial information case of stochastic processes on the Earth
surface or in the map plane.

For a more extensive discussion, see [Vermeer, 2008].
5.2 Stochastic processes
A stochastic process is a stochastic quantity the domain, or space of possible values, of

which is a function space. An example of a stochastic process is the position in space x (t)
of a satellite; the stochasticity exists in that, next time around, the satellite, although
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starting from the same position with the same velocity, will follow a slightly different
trajectory due to variations in air drag etc.

A stochastic process typically is a function of time; this doesn’t have to be the case,
however. Gravity anomalies Ag (¢, ) are a textbook example of a stochastic process
that is a function of location on the Earth’s surface.

Just as for stochastic quantites we have variance, covariance and correlation, so we have
corresponding quantities here.

Variance:

Cupz (t) =Var{z(t)}.

Autocovariance:

Cyz (t1,t2) = Cov{z (t1),z (t2)}.

Autocorrelation (always between -1 and +1):

_ Cov{z(t1),z(t2)}
Voo (t1,12) \/VCLT‘ {z(t1)} Var {I(tQ)}

Cross-covariance:
Cay (t) = Cov{z (t),y(t)}

or

Cmy (tl,tQ) = Cov (& (tl) ,y(tQ)) .

5.3 Covariance function

On the Earth surface, we may write the covariance function — in reality, the autoco-
variance function — of a stochastic process z (¢, A) as follows:

CCBZL“ (Soa >‘7 90/3 /\,) )
which represents the covariance between the gravity anomalies in two points: Ag (¢, \)
and Ag (¢, \).

Now usually we assume that the gravity field of the Earth, like the Earth itself, is
approximately spherically symmetric. This means we can postulate the following two
properties.

homogeneity: this means that the statistical behaviour, specifically the covariance func-
tion, does not depend on absolute location.

isotropy: this means that the statistical behaviour, specifically the coveriance function,
does not depend on the direction or azimut between the two points under consid-
eration. It only depends on the geocentric spherical distance .
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Figure 8: Spherical distance and azimut between two points P and Q.

where v is the geocentric angular distance between the points (o, ) and (¢’, \'). For
the sphere we have, e.g.,

cos ) = sin psin ¢’ + cos ¢ cos ¢’ cos ()\ — )\').

Now, for a quantity like gravity anomalies Ag (¢, ), we may have, according to R. A.
HIRVONEN,

_ G
1+ (¥/00)®

where vy is called the correlation length and Cy = Cagag (0) the variance of the gravity
anomalies. This is a computationally practical and in many areas of the Earth, rather
realistic formula for describing the statistical behaviour of gravity.

(4)

CAgAg =

For gravity anomalies, because of the way they are defined, we have furthermore
E{Ag} =0,

i.e., they are centered on zero.

5.4 Least-squares collocation

Measurements on the Earth surface are typically done in discrete points. As examples
we may mention temperature or air pressure measurements at weather stations, sea
level observations at tide gauges, gravimetric measurements in the field, sonar depth
soundings at sea, etc. etc.
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Our subject of interest, however, is what the value of the field being sampled is every-
where, not just in the finite number of points that have been sampled. This seemingly
impossible problem can be solved, thanks to the fact that all these fields have a covari-
ance function, which describes the statistical relationship of the field values in points
that are close to each other. The values thus obtained are estimates, and contain un-
certainty; but if the average separation of the measurement points is small compared to
the field’s correlation length, the uncertainty will be small.

As an example, given, e.g., gravity anomaly values Ag; measured in a number of points

i=1,2,...,n, we may write up the variance-covariance matrix of these measured values
- Co  C(Y12) -+ C(¢1n)
Cij = C (¢y5) = ¢ (%21) C;O - (1:/%)
CWm) CWm) - Co

Note that this matrix describes the physical behaviour of the field of gravity anomalies in
an area, the natural variation of gravity when moving from point to neighbouring point.

Additionally we also have to consider that the gravity values Ag; were the result of
measurement, and that this measurement was uncertain. We can describe this measure-
ment uncertainty, or dispersion, or variance, by the measurement variance or dispersion

matrix

D;; = Var {%,%} .

Typically

Dij = 0'2.[ = 0'2(52']',
where I = ¢;; is the unit matrix or Kronecker delta, and o? the variance of measurement
of gravity anomalies (itself consisting of a number of error contributions). This is the
common assumption that the measurements are 1) of equal precision for all points, and
2) uncorrelated because statistically independent between any two points.

If we now want to predict the gravity anomaly in a point P, we can do so in the following
way. First, consider the variance matrix between the unknown point P and the known
points ¢:

C (Yp1)

C
Cpi =C (Yp;) = (lf}m)

C (tpn)

This preparatory work having been done, we can now write the estimator:

Agp = Cp; (Cij + Dij)flgj,
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where the data vector
Agi
Ago

Agn
is an abstract vector containing the measured anomaly values.
We can also get a value for the error variance of this estimate: the error variance of P
is
Ypp=Cy—Cp; (Cij + Dij)il ij.
More extensive treatment of the situation where there are several unknown points P can

be found in the literature.

This estimation technique is called least-squares collocation and it produces statistically
optimal results. It is also a suitable interpolation technique in situations where spatial
data is given only on a sparse, irregularly spaced set of points but would be needed, e.g.,
on a regular grid. A computational drawback is, that a matrix has to be inverted which
is the same size as the number of data points given.

5.5 Semi-variances and kriging

Starting from the above HIRVONEN covariance function , we can compute the variance
of the difference between two gravity anomalies in points Pand @, as follows:

Var{%—%} = Var{%}—i—Var{%}—QCov{M,%}:

Co 20 (Y/v0)®

= T e e 1+ (e

2C)y?
P2 + 9§

In the situation where 1 < 19, we get
Var {Agp — Agg | = 26y (#/)’
On the other hand, for ¥ > g, we get

Var {%—%} =~ 2C).

We can identify half of this expression, %Var {Agp — AgQ} , with the semi-variance

of Ag. We also recognize 1y, or perhaps a few times 1)y, as the “sill” at which the
semi-variance levels off to the constant value Cjy.
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Figure 9: HIRVONEN’s covariance function (for parameter values Cy = 99 = 1) and the
associated semi-variance function; MARKOV’s covariance function and associ-
ated semi-variance

For the alternative MARKOV covariance function (see below):
C W)= Cbeﬂ/’/wo7
we get
%Var {% - %} = Cy— Coe ¥/ =
= Gy (1-em).

Now, for ¢ < 1g this becomes Cy¥/v,, while for ¥ > 1y we obtain again Cy. Note the
linear behaviour for small ¢, which differs from the quadratic behaviour of the HIRVONEN
function and is typical for a “random walk” type process.

Kriging is a form of least-squares collocation described within this semi-variance formal-
ism.

5.6 Markov processes

We often have a situation, where we want to generate, e.g., for simulation purposes,
a coloured noise process of time t. A standard method for doing so, starting from an
available white noise process n(t), is to use a MARKOV (or GAUSS-MARKOV) pmcessﬂ

First, let us explain what we mean by a white noise process. It is a process in which two
function values for different epochs ¢; and to are free of correlation. More precisely, it
has an autocovariance function

Chn (t17 t2) =Q (tl) 0 <t2 - tl) )

SA.A. MARKOV, Russian mathematician, 1856 — 1922
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where @ is called the variance of n. 4 (-) is the Delta functionﬁ, for which holds:

oo forT=0

o(r) = {o for 7 # 0

—00

Now we can construct a (first-order) Markov pro-
cess x by the following first-order differential equa-
tion:

i —kz + n. (6)
The beauty of this is that the process can be gen-
erated sequentially, from a starting value z (tp), in-

tegrating forward in time taking in values n (t) “on
the fly”.

One can show that the autocovariance function of
such a MARKOV process, considered as a stationary
process, looks like

~—

G 11, 12) = st G
This function is depicted in Figure[T] for some val-
ues of k.

We can discretize the differential equation to describe
chain:

/+005(T)d7:1.

Figure 10: Andrey Andreyevich
MARKOV

the MARKOV process as a MARKOV

1

Like the process, also this chain can be computed sequentially though in index order 4,
where in every step, only knowledge of the previous index value is needed. One could
say that a Markov chain is “memory free”. The time step At here stands for ¢t; — t;_1.

SIntuitively we can have a mental picture of how such a “function” is built.

First the following block function is defined:

0 ifr>2tor
51’(7):{1 if <
b 2 >

Obviously the integral of this function

T<—%
b
TSE

+oo
/ O (T)dr =1 (5)

and & (1) = 0 if || is large enough.

Now let in the limit b — 0. Then J, (0) — oo, and to every 7 value 7 # 0 there is always a
corresponding bounding value for b under which 4, (7) = 0.

25



1.8
1.6

T
EE N
ol

1.4

1.2

10

Figure 11: The autocovariance of a first-order MARKOV process.

Instead of sequentially, we can compute this in one go by putting all the z; into one
vector:

Ly

L3

[
I

L

Now we can write the matric equation
x=(1-kAt)Vx +n,

where n is an abstract n-vector of uncorrelated random values of known variance @), and
V' is the “predecessor matrix” which looks like

Vi — 1 forj=i—-1
Y771 0 otherwise

In other words, it has one sub-diagonal of ones, shifted one place to the left from the
main diagonal:

0
1 0

1 0
1

0

Looking at the differential equation @, we can write it just as well in the inverted time
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direction. Then we get

B SN
= —RKX n — = RX —N.
d(—t) N R
The statistical properties, like the autocovariance function, are precisely the same as in
the original. And as this function is symmetric, we can add the two versions together
and have still essentially the same autocovariance function!

The corresponding discrete matric equation is
x=(1-kAt) VT x +n,

where now V7, the transpose of V, has ones only on the sub-diagonal one place to the
right of the main diagonal.

Adding together the original and the time-reversed equation yields
1
x = (1 — kAt) §WX+E>

where now W =V + V7T the prozimity matriz, looks like
0 1
1 01
W = 1 0 1
1 0 1
10
i.e, it has 1 for neighbours, and 0 for non-neighbours. Luckily for numerical work, this
matrix is very sparse.

Inverting this equation gives

-1
x = I—%(l—kAt)W n.

We can identify here the subexpression (1 — kAt) with p, the parameter describing the
correlation strength.

This description was given in one dimension, time ¢; the whole procedure can be easily
generalized to two dimensions, described, e.g., by two co-ordinates = and y. In that case,
instead of two neighbours, the predecessor and the successor, every element x; of the
discretized process will have four direct neighbours. In this multidimensional context it
is perhaps better to just forget about sequential evaluation.

Also this explanation was only about first-order GAUSS-MARKOV processes, described
by a first order differential equation. It can be generalized to second-order GAUSS-
MARKOV processes. Then many image-processing methods such as Gaussian blur can
be described by it as well.
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6 Modern approaches in statistics

For a more extensive and somewhat different discussion, see [Vermeer, 2008].

6.1 Statistical testing

You will all know how standard statistical testing is done: you formulate a hypothesis,
you construct a confidence interval, and you test whether the variate of study lies within
the interval (“the hypothesis is rejected”) or outside it (“the hypothesis is accepted”).

Typically, in the social sciences and humanities, the significance level of the test will be
chosen, conventionally, equal to 95% — a value often called «v. This is purely conventional,
and rarely justified in the literature.

We will use as a textbook example a triangle in the plane where three angles o, f and
~ have been measured. The hypothesis we want to test is “one or more of these angle
measurements contains a gross error”, and the testing variate is A = a4+ g + v — 180°,
which has a standard deviation of o and will deviate significantly from zero if the tested
hypothesis is true.

Some pertinent remarks:

1. You need, in addition to the hypothesis you are testing (the “alternative hypothesis”
H,), a null hypothesis you are testing against. This hypothesis has to make physical
senseﬂ i.e., it should be reasonably possible that it is true. In our example, the
case that all three angles were measured without gross error is the null hypothesis,
and it is certainly a reasonable one.

2. You need to set a significance level for testing. If we assume that A is normally
distributed (it will be if the measurements o, 3 and ~ are, and are statistically in-
dependent), then a 95% significance level corresponds to a (two-sided) significance
interval of A +1.960. So, if ||A]| > 1.960, we accept the alternative hypothesis
(“there is a gross error in one or more of the angle measurements”) and reject the
null.

3. A 95% significance level corresponds to a p value of p = 0.05. Often the significance
level of a test is stated as its p value, which can be extracted from the tabulated
cumulative probability distribution (e.g., the normal distribution).

It is important to understand what the p value means: it states

the probability that the testing variate A is as large or larger than the
testing limit in case the null hypothesis is true.

What it does not state is

] babilite that tho ol o] Lo i false.

Please take note!

"Le., it should not be a “silly null”. http://www.ets.org/Media/Research/pdf/RR-01-24-Wainer.pdf.
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6.2 Philosophical background of statistical testing

The problem with classical statistical testing (R.A. FISHER, 1890-1962) as described
above is, that it doesn’t really give us what we are interested in. What we would really,
really like to know, is “how probable is it that our alternative hypothesis is true?”. And
the test doesn’t give us that. What it gives us is the probability, given that the null
hypothesis is true, of seeing a value of A that leads to the null being rejected and the
alternative hypothesis being accepted.

The latter reasoning (“the null is true — the probability of seeing a testing variate A at
least this big is 5%”) is called forward inference. The former reasoning, which we would
like to do but cannot (“we see a testing variate A that is this big — we may conclude,
with 2% probability, that the alternative hypothesis is true”), is called reverse inference.

Why 95%7 Please remember that this value is choosable. It is conventionally set to 95%
in the social sciences, but this really is convention only.

In statistical testing we will make two different
kinds of errors: errors of the first kind, and errors
of the second kind.

1. Error of the first kind (type I error): we reject
the null, although in reality it is true. The
probability of a type I error occurring is 1 —
a=1-0.95=5%.

2. Error of the second kind (type II error): we
accept the null, although in reality it is false
(i.e., in our example there is a gross error in
one or more of the angle measurements). The
probability of a type II error depends on the
size of the gross error considered. If the gross
error is small, it is likely to slip through in
testing; if it is large, it is likely to get caught. Figure 12: R.A. FISHER

The probability of catching a gross error of given
size will depend on the significance level chosen.
E.g.,

e For a significance level o = 95%, the probability of a gross error of size 3o being
caught is 8 = 85.1%.

e For a significance level a = 99%, the probability of catching the same gross error
is only 8 = 66.4%. To reach the same detection probability of 85.1%, the gross
error would have to be of size 3.6150.

We thus conclude that the choice of significance level is an optimization problem, weighing
the “cost” of type I errors — throwing away perfactly good observation data — against the
“cost” of type II errors — delivering a result that is contaminated by undetected gross
errors of a certain size, which will increase with increasing a.
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Figure 13: Statistical testing: significance level o and power 3

In order to properly solve this optimization problem, we would have to know how probable
it is that gross errors of a certain size will occur. We rarely if ever have this information,
so-called prior information.

We can consider also other situations in which statistical testing is applied: e.g., detection
of Earth crustal motions from geodetic measurements around the San Andreas fault line.
In this case we have:

Hy: there have been no crustal motions along the fault line during the period of mea-
surement

H,: the Earth’s crust has moved along the fault line.

Again, the test to be applied will not give us the probability that crustal motion took
place; it will only tell us the probability that the test will give us a false alarm, i.e.,
detect crustal motion which in reality didn’t happen, a type I error. Of course we want
this probability to be small: false alarms are embarrassing and costly and undermine
confidence. But we also do not want to miss a real crustal motion. In order to judge to
probability of this happening, we must know the probability of such crustal motions in
general, i.e., prior information.
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6.3 Bayesian inference

Bayesian inference is a technique that allows us to do reverse inference, i.e., conclude
from observations on the relative probabilities of various hypotheses that can explain
the observational data. As we saw above, such reverse inference is only possible if we
have prior information on the probabilities of null and alternative hypotheses.

The Bayesian approach to inference does not consider hypotheses at all. Rather, it
estimates the joint probability distribution of the parameters of interest, given the ob-
servational data, and given the prior information we have, also in the form of a joint
probability distribution, on what values these parameters are likely to assume. The
source of this prior information may be, e.g., previously obtained and processed mea-
surements, general physical considerations, the considered opinions of experts in the
field, etc. etc.

The method goes back to the famous equation by the Reverend Thomas BAYESﬁ

P2 = 5 PO,

where 6 is the set of unknown parameters and x is the set of observations.

What we are looking for is the distribution
P (0 | x), the probability distribution of the param-
eters 6, given (on condition of) the observations x.
What we have access to is P (z | ), the probability
distribution of the observations given (i.e., condi-
tional upon) certain values of the parameters 6.
This probability distribution is usually given in a
form that contains the 6 as unknowns, and can be
computed for an assumed 6 and the given observa-
tion set z.

P (z), the a priori probability distribution of the
observations, acts as a normalizing constant here,

just guaranteeing that all probabilities add up to
1 Figure 14: Thomas BAYES (proba-

bly not!)

P (0) is the interesting thing here: it is the prior,
or prior distribution assumed for the unknown pa-
rameters to be estimated.

So, to summarize:

1. Bayesian inference doesn’t estimate parameter values or variances etc. at all; in-
stead, it obtains a posterior probability distribution for the parameter set — from
which, if so desired, expected values, most likely values, variances etc. can be
obtained.

8England, 1702-1761
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do

Figure 15: The continuous case of applying the BAYES theorem. This shows also how
the integrated or “marginal” probabilities P (z) and P (6) are defined.

2. Bayesian inference does reverse inference, i.e., it actually provides actionable in-
formation on the parameter set of interest, given the observations. But

3. Bayesian inference requires that we have prior information on the parameter set
of interest.

If it is not clear what would be appropriate prior information, and it appears that the
result of Bayesian estimation depends sensitively upon the prior, we have a problem: not
enough observational information. In that case, more observations should be obtained if
possible; if not, the sensitivity of the result to the assumed prior should be studied and
honestly reported.

6.4 Information theoretical methods
Often we may want to establish which one of a set of alternative models is the most

appropriate one for describing a given set of observational data. Also here, often people
reflexively turn to hypothesis testing, treating one of the alternative models as the null
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and testing the others against it; or even worse, test each model against “nothing’ﬂ More
appropriate in this case would be to test models against each other without assuming
one of them to be “privileged” as being the null.

Such methods are called information theoretical methods of model selection; the oldest,
classical one is the AKAIKE Information Criterion (AIC), cf. [Burnham and Anderson, 2002].

AIC =2k —2InL,

where k is the number of model parameters or unknowns, and L is the value of the
likelihood function for the model to be maximized.

Under the model assumption of normally and in-
dependently distributed observations, we may sub-
stitute the square sum of residuals for this:

n 'U2

2 T
AIC = 2k + 1 | 2= % ]
n

where v; are the residuals, and n the number of
observations.

/ :
Note that the information criterion imposes a ‘\\
penalty for introducing extra unknowns (parameter
k): every extra unknown introduced makes it eas-
ier to achieve a good fit to the datﬂ The proper
question to ask is, if it achieves a better fit above
and beyond this trivial improvement due to simply
having more free parameters to fit. The Akaike cri-
terion is a was to more honestly answer this question, and to avoid “fitting an elephant”.

Figure 16: Hirotugu AKAIKE 1927-
2009

Note that for small sample sizes there is a “corrected” version of the AKAIKE criterion,
which in the limit for large sample sizes is equivalent to the above one:

"ov2 o 2k(k+1
szlvz + ( )

AICc =2k +nln 1

This is the recommended formula for general use [Burnham and Anderson, 2002].

“Note that JAYNES [Jaynes, 2003} p. 504] quotes JEFFREYS: “Jeffreys (1939, p. 321) notes that there
has never been a time in the history of gravitational theory when an orthodox significance test, which
takes no note of alternatives, would not have rejected Newton’s law and left us with no law at all.

”
ONote that this corresponds to “OccaM’s Razor” or the Law of Parsimony: “entities must not be
multiplied beyond necessity”
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